首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Powder Technology》1987,52(1):59-68
Square-nose slugging that occurs with large particles in relatively small-diameter fluidized beds shows certain similarities with the fluidization behaviour in a fluidized bed coal combustion system with closely packed heat-exchanger tubes. In the present investigation, square-nose slugging is studied in fluidized beds of 0.1 and 0.15 m I.D. with coarse sand and alumina particles, at ambient conditions. Recording of pressure fluctuations was used to analyse the fluidization behaviour. A remarkable change in the pressure fluctuation pattern occurs at the transition from normal fluidization to slugging: a more regular signal with a narrowed frequency spectrum is found.In the square-nose slugging regime, the pressure fluctuations seem to be caused by the disintegration of a rising solids slug, followed by the raining down of the particles. Experimental evidence for this mechanism was found in the behaviour of the magnitude of the pressure fluctuations as a function of operating variables.The frequency of square-nose slugging increases with approximately the square root of the bed diameter and appears to be independent of the type of particles used. The slug frequency decreases slightly with the gas velocity between about 0.8 and 1.8 m.s−1, and is inversely proportional to the stationary bed height between 0.15 and 0.4 m.  相似文献   

2.
Drying of nylon (Geldart D) and expanded polystyrene (Geldart B) particles in fixed and fluidized beds were studied experimentally and theoretically. Fluidized bed dryers are sometimes operated at velocities beyond bubbling fluidization to mitigate against de‐fluidization of surface wet particles. It was found that theoretical analysis using three different drying methods could predict the constant‐drying rate at such velocities and also across the entire fluidization regimes (fixed bed, bubbling, slugging and turbulent fluidization) as long as the bed remains completely fluidized. Results also showed that the theoretical predictions were accurate beyond previously reported velocity limits in a laboratory scale dryer. During bubbling fluidization, the cross flow factor method was used effectively to predict the influence of bubble phase on drying rates. In the falling‐rate period, it is demonstrated that the drying behaviour of nylon at different gas velocities can be characterised by a single normalized drying curve.  相似文献   

3.
Spout–fluid beds are used for a variety of processes involving particulate solids, like coating, drying, granulation and etc. The spout–fluidized bed combines a number of favorable properties of both spouted and fluidized beds. In this study, the Granular Eulerian model is used in 3-D hydrodynamic simulation of spout fluidized bed for calculation of minimum fluidization velocity. The results of simulation were compared with experimental data and good agreement was obtained. Then the effect of geometry on minimum fluidization velocity was studied. Also a review of flow regimes in different spout fluidized bed geometries was studied.  相似文献   

4.
An investigation was carried out in a circulating fluidized bed to explore if rice husk could be fluidized without mixing it with any foreign solids. Experimental results indicate that bed cross‐section has an important influence on the fluidization characteristics of rice husk. Larger the cross‐section, easier it is to fluidize the husk without slugging. Particle size, sphericity, bulk density, and transport velocity of husk were measured. The riser was operated under bubbling bed regimes. Efforts were made to measure the minimum fluidization velocity by varying the bed depth and cross‐section.  相似文献   

5.
张永民  卢春喜 《化工学报》2010,61(9):2296-2304
用实验方法比较了一个二维床和一个大型三维床内FCC颗粒流化床在鼓泡域和湍动域内的流化质量和气体返混特性。实验结果表明,床形对A类颗粒气固流化床具有非常大的影响。二维床和三维床的流动和气固混合行为既具有相似性,如床膨胀随气速的变化趋势;也具有很大的差异性,既包括三维床流化质量差、轴向气体扩散系数大等量上的不同,又包括压力脉动、轴向气体扩散系数的变化趋势以及湾流模式等质上的不同。总之,在本研究中,二维床体现的是一种具有强烈壁效应的小型流化床的特征,而三维床则体现的是静床高度具有很大影响的大型流化床的特征。  相似文献   

6.
Semi-batch liquid fluidization of binary solid mixtures is investigated for bed expansion, for inversion of solid species and for stratification by size. This first of three papers deals with overall bed expansion, and it is shown that, even where there is total inter-mixing of the two solid species, the bed expands as if it were two single species beds in series. The superiority of this serial model over property-averaging models, and the inapplicability of relative velocity models, for predicting the expansion of semi-batch liquid-fluidized beds of multi-species solids are also demonstrated.  相似文献   

7.
《Powder Technology》1987,52(2):139-148
The fluid mechanics of liquid-fluidized magnetically stabilized beds (MSBs) have been studied to determine their operating characteristics and properties. Experiments were conducted to study the operating regimes, bed expansion and pressure drop, and axial liquid dispersion.Several regimes exist for magnetized, liquid-fluidized beds. These include the unfluidized or packed, stable, roll-cell, and random motion regimes. The transition between the stable and roll-cell regimes was found to be strongly dependent on the type of fluid distributor grid used. A hysteresis was found in both the pressure drop and bed expansion behavior. With decreasing liquid velocity, the pressure drop through the bed fell immediately to a value below the weight of the bed and the bed remained expanded even after the liquid flow had ceased. The height of the bed in the stable regime was found to depend on the liquid velocity but not on the strength of the magnetic field.Contacting experiments indicate axial dispersion in a liquid-fluidized MSB to be nearly the same as for packed beds and independent of the path taken to the stable operating condition.  相似文献   

8.
A new flow regime map, resulting from more fundamental studies on the hydrodynamics and new flow regimes, is proposed in response to more practical reclassifications of the existing regimes with the development of upward gas-solids fluidization systems. The previously reported flow regime maps and flow structures of some widely used fluidized beds are carefully examined. To better reflect the industrial applications, the fast fluidization regime is reclassified as high-density and low-density circulating fluidization regimes. A consolidated flow regime map is then proposed where the flow regimes of upward fluidization expand to include new types of fluidized beds such as circulating turbulent fluidized bed and high-density circulating fluidized bed. The proposed flow regime map consists of six flow regimes: bubbling, turbulent, circulating turbulent, high-density circulating and low-density circulating fluidization, and pneumatic transport. The transitions between the regimes are discussed with new correlations proposed for fluid catalytic cracking type particles. Analysis on the dominating phase in the different types of fluidized beds reveals the dynamic changeover from solids phase continuous in conventional low-velocity batch/“fixed” fluidization operations to gas phase continuous in high-velocity continuous/“moving” fluidization operations and provides more insights to the transitions between the flow regimes for industrial design and practice.  相似文献   

9.
In this paper the concept of micro-fluidized beds is introduced. A cylindrical quartz reactor with an internal diameter of only 1 mm is used for process conditions up to and 244 bar. In this way, fast, safe, and inherently cheap experimentation is provided. The process that prompted the present work on miniaturization is gasification of biomass and waste streams in hot compressed water (SCWG). Therefore, water is used as fluidizing agent. Properties of the micro-fluid bed such as the minimum fluidization velocity (Umf), the minimum bubbling velocity (Umb), bed expansion, and identification of the fluidization regime are investigated by visual inspection. It is shown that the micro-fluid bed requires a minimum of twelve particles per reactor diameter in order to mimic homogeneous fluidization at large scale. It is not possible to create bubbling fluidization in the cylindrical micro-fluid beds used. Instead, slugging fluidization is observed for aggregative conditions. Conical shaped micro-reactors are proposed for improved simulation of the bubbling regime. Measured values of Umf and Umb are compared with predictions of dedicated 2D and 3D discrete particle models (DPM) and (semi)-empirical relations. The agreement between the measurements and the model predictions is good and the model supports the concept and development of micro-fluid beds.  相似文献   

10.
Operation of fluidized beds at high temperatures is limited by the tendency of the bed particles to agglomerate, causing defluidization. This operating limit is important in several processes, including coal conversion, iron ore reduction, and cement manufacture.At lower temperatures, the bed remains fluidized at velocities above the normal minimum fluidization velocity. Once the bed is operating above an ‘Initial Sintering Temperature’, the fluid velocity must be well above the normal minimum fluidization velocity in order to prevent defluidization. The defluidization velocity increases with increasing operating temperature. The ‘Initial Sintering Temperature’ can be estimated using a dilatometer to measure thermal expansion and contraction of a loosly packed sample of the bed particles.  相似文献   

11.
The hydrodynamics of a three‐phase airlift reactor of magnetic particles has been investigated in the presence of a transverse magnetic field. Experiments were carried out in two modes: applying the magnetic field to a static bed then increasing the field flow, and applying the magnetic field to a fluidized bed then increasing the magnetic field intensity. In magnetizing the first mode and parallel to the increasing gas superficial velocity, several bed regimes were observed, including: initial packed, stabilized, and fluidized beds. On the other hand, in magnetizing last mode and while increasing the magnetic field intensity, the fluidized bed changes from a fluidized to a stabilized to frozen bed. Bed expansion before the onset of fluidization increases as the magnetic field intensity increases. Minimum fluidization velocity was found to be strongly dependent on the magnetic field intensity and the minimum stabilization intensity was also strongly dependent on the gas velocity. The magnetic field intensity also affects the bed expansion hysteresis and the liquid circulation velocity. A photocell was used to measure the water circulation rate in the downcomer of the reactor.  相似文献   

12.
The present work is concerned with a fluid-dynamic study in spouted beds using deformable dice pieces of red guava. Data are presented on structural variations of the bed due to changes of regime during drying. Variation of physical properties (size and density) results from the volumetric shrinkage of these materials. Alterations in the fluid-dynamic stability of the spouted bed were correlated with Archimedes number. Along the process, the transition from fixed bed to fluidization can be observed, followed by stable spout and slugging. Mapping of the different regimes as a function of the moisture content is also presented.  相似文献   

13.
The velocity profile on the bed surface of two‐dimensional linear‐converging beds with 15° and 30° wall angles was measured at different superficial velocities using hot‐wire anemometry. The results of the velocity measurements indicate that local fluidization in the corners is caused by the geometry‐induced maldistribution of fluid flow, and it occurs when the velocity in the corners exceeds the minimum fluidization velocity of particles. The results of pressure measurements within the bed show the same trend as the velocity profile, providing a qualitative verification of the velocity profile measurement. It is shown that the variation of measured pressure drop over the bed with velocity does not agree with the Ergun equation at high superficial velocities due to the severe maldistribution of fluid flow.  相似文献   

14.
针对气固节涌床,在实验基础上,基于欧拉?欧拉双流体模型结合颗粒动力学理论,考虑Geldart A类颗粒聚团对气固间曳力的影响,采用修正后的Gidaspow曳力模型对气固节涌床进行数值模拟。结果表明,通过与实验结果及经验公式进行对比,修正的模型可准确合理地模拟流化床内节涌特性。表观气速0.09 m/s≤Ug≤0.39 m/s时,床层内部压力脉动标准偏差随表观气速增加而增加,流型由鼓泡转变为节涌直至节涌程度最大,床内气固流动主要受轴对称栓运动特性影响,床内压降、床层膨胀比、气栓平均上升速度、最大轴对称栓长度随表观气速增加而增加,最大轴对称栓产生位置随表观气速增加而降低;Ug>0.39 m/s后,床内压力脉动标准偏差随表观气速增加而降低,节涌程度降低至向湍动流态化流型转变,床内气固流动主要受壁面栓运动特性影响,增加表观气速,节涌床内压降变化幅度较小,气栓平均上升速度增加幅度加大,床层膨胀比及最大轴对称栓长度降低,最大轴对称栓产生的位置略有升高。  相似文献   

15.
There are many techniques to characterize the hydrodynamics of fluidized beds, but new techniques are still needed for more reliable measurement. Bed vibrations were measured by an accelerometer in a gas–solid fluidized bed to characterize the hydrodynamics of the fluidized bed in a nonintrusive manner. Measurements were carried out at different superficial gas velocities and particle sizes. Pressure fluctuations were measured simultaneously. Vibration signals were processed using statistical analysis. For the sake of the evaluation, the vibration technique was used to calculate minimum fluidization velocity. It was shown that minimum fluidization velocity can be determined from the variation of standard deviation, skewness, and kurtosis of vibration signals against superficial gas velocity of the bed. Kurtosis was proved to be a new method of analyzing vibration signals. Results indicate that analyzing the vibration signals can be an effective nonintrusive technique to characterize the hydrodynamics of fluidized beds. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindrical and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.  相似文献   

17.
Characterization of spouted bed regimes using pressure fluctuation signals   总被引:1,自引:0,他引:1  
This work compares time, frequency and phase space analyses of pressure measurements in different spouted beds. The experiments were carried out in different constructions of spouted bed apparatuses, operated under ambient conditions and under different spouting regimes. Spouted beds are used when the conventional fluidized beds fail to achieve a homogeneous and stable flow regime as, for example, in the case of non-spherical particles and in poly dispersed and finely dispersed systems. Different fluidization regimes in spouted beds have been characterized by the analysis of pressure fluctuation signals. Several flow regimes are found to exist as: fixed bed, channel formation, bubbling formation, stable spouting and slugging bed regimes. Analyses of standard deviation and chaotic time series on pressure fluctuation signals are conducted to determine the transition gas velocities. A treatment technique using the Fast Fourier Transformation of measured pressure fluctuations was developed to create plots describing the bed behaviour evolution from fixed to slugging bed. At the beginning of stable spouting the amplitude of pressure fluctuations is uniform and small.  相似文献   

18.
The contact time of particles at the walls of gas fluidized beds has been studied using a radioactive particle tracking technique to monitor the position of a radioactive tracer. The solids used were sand or FCC particles fluidized by air at room temperature and atmospheric pressure at various superficial velocities, covering both bubbling and turbulent regimes of fluidization. Based on the analysis of tracer positions, the motion of individual particles near the walls of the fluidized bed was studied. The contact time, contact distance and contact frequency of the particles at the wall were evaluated from these experimental data. It was found that in a bed of sand particles, the mean wall contact time of the fluidized bed of sand particles decreases by increasing the gas velocity in the bubbling and increases in the turbulent fluidization. In other words, the particle-wall contact time is minimum at the onset of turbulent fluidization in the bed of sand particles. However, the mean wall contact time is almost constant in both regimes of fluidization in the bed of FCC particles. All the existing models in the literature predict a decreasing contact time when the gas velocity in the bed is increased. It was also shown that the contact distance increases monotonously by increasing the gas velocity in the bed of sand particles, while it is almost constant for the bed of FCC particles. Contact frequency has a trend similar to that of the contact time for both sand and FCC particles.  相似文献   

19.
The fluidization and heat transfer behaviors of a turbulent fluidized bed were investigated using computational fluid dynamics (CFD). The effects of inlet superficial velocity on heat transfer behaviors in a turbulent fluidized bed were analyzed and compared with those operated in other fluidization regimes. The effects of using particles belonging to different Geldart groups in a turbulent fluidized bed on fluidization and heat transfer behaviors were evaluated. For both fluidization regimes investigated, the solids temperature distribution during the heat transfer process became less uniform when the particle size was reduced.  相似文献   

20.
陈恺成  田于杰  李飞  吴昊  王维 《化工学报》2020,71(7):3018-3030
流化床的设计、放大和优化需要对流域有基础的认识,然而气固系统的流域划分至今仍存在诸多争议。总结了气固流化系统流域划分的研究现状,并分析了流域划分的主要争议,发现文献中对快速床的界定存在分歧。通过耦合基于稳态EMMS的曳力模型开展双流体模拟,对不同气速和颗粒浓度下的循环流化床进行了数值研究。模拟结果捕捉到了颗粒回流、节涌等现象,据此确定了快速床的操作边界并绘制了流域图,该流域图能够展示循环床中的各流域形态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号