首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用熔融-退火-放电等离子烧结工艺制备了YbxCo4Sb12(x=0.27,0.28,0.29)合金块体样品。XRD、SEM、EDS分析表明,成功合成了Yb掺杂的单相CoSb3热电材料。当Yb含量从0.27上升至0.29,材料的功率因子随温度的升高呈现先上升后下降趋势,热导率则先下降后上升。由于相对较高的功率因子1815 μWm-1K-2以及较低的热导率2.23Wm-1K-1,合金Yb0.29Co4Sb12在773K时获得较高的ZT值0.62。以磁控溅射法对N型热电元件Yb0.29Co4Sb12进行Al-Ni防护涂层溅射,SEM、EDS表明涂层与基底结合良好,经涂层防护后的Yb0.29Co4Sb12元件热电性能稳定性较好。以钎料Ag40Cu60对热电元件Yb0.29Co4Sb12与电极片Mo50Cu50的接头进行焊接行为研究,发现界面处结合良好,界面处Co、Sb、Yb、Mo等元素未发生严重扩散。  相似文献   

2.
成波 《热加工工艺》2012,41(10):100-102
利用放电等离子(SPS)烧结工艺制备Mn掺杂In2O3多晶陶瓷材料。通过测试热电传输性和观察微观结构,研究了掺杂工艺对SPS烧结多孔结构In2O3陶瓷传输性能的影响。结果表明,低浓度掺杂的样品在测试温度范围内能得到较高的电导率和热电势;掺杂试样In1.99Mn0.01O3在973 K可获得最高的热电功率因子4.0×10-4W.K-2.m-1,从而可知,控制In2O3中低浓度的Mn的掺杂量可获得较好的高温n型热电材料。  相似文献   

3.
基于Heusler型合金的各项优异性能,运用机械球磨、真空熔炼以及热处理工艺制备了Co元素掺杂的Ni_(50-x)Co_xMn_(39)Sn_(11)(x=0,2,4,6)系Heusler型系列块体材料。采用光学显微镜,能谱仪对块体试样进行组织结构的表征,利用激光导热仪、热电参数测试系统测试试样的热电性能,研究了不同温度条件下掺杂Co元素对Ni基Heusler型合金材料的组织结构及热电性能的影响规律。结果表明:适量的Co掺杂,可以改善材料的热电性能,使得电导率随掺杂量的增加而增大。掺杂后试样的热电优值升高,且x=6试样在700K获得最大热电优值。  相似文献   

4.
用悬浮熔炼法制备了含Sm和Co的N型FeSi2 基热电材料 ,研究了Co对含Sm的FeSi2 材料电学性能的影响。结果表明 ,材料的电学性能是由两种掺杂元素共同决定的 :Sm能明显降低样品的电阻率 ,而适量的Co能提高重掺Sm的FeSi2 基热电材料的α值和功率因子 ,Co在含Sm的FeSi2 中的最佳掺杂摩尔分数为 2 .2 3%左右。  相似文献   

5.
(Na1-yMy)1.6 Co2O4(M=K,Ca,Sr)的制备及电学性能   总被引:2,自引:0,他引:2  
用溶胶凝胶法制备了NaCo2O4及(Na1-yMy)1.6Co2O4(M=K,0.05≤y≤0.35;M=Ca,Sr,0.10≤y≤0.40)的氧化物。研究结果表明:掺杂Ca、Sr的NaCo2O4样品的Seebeck系数都有一定提高;而掺杂K的NaCo2O4样品的Seebeck系数无明显提高,且掺K使NaCo2O4的功率因子降低;对NaCo2O4掺杂Ca的量0相似文献   

6.
α-In2Se3是一类A2ⅢB3Ⅳ型宽带隙半导体材料。但在α-In2Se3化合物中共掺杂适量的Cu,Te后发现禁带宽度(Eg)变窄,Eg值由本征态时的1.32eV减小到1.14eV。掺杂后电学性能得到了大幅度的改善。最大功率因子由0.7610-4增大到2.810-4W·m-1·K-2;最大热电优值(ZT)从本征态时的0.25提高到0.63。高分辨电镜(HRTEM)观察结果表明,在未掺杂时,α-In2Se3呈现非晶状组织,共掺杂Cu,Te后,微结构则转变成明显的多晶组织。在温度高于500K时,掺杂后晶格热导率的适量提高与该微结构转变有直接联系。  相似文献   

7.
采用燃烧合成-热处理工艺制备热电材料β-FeSi2,研究了Cu掺杂和不同的硅含量对β-FeSi2相变的影响。利用X射线衍射仪和扫描电子显微镜分析了合成的铁硅间化合物的相组成及其微观形貌。结果表明:掺杂0.5 at%的Cu在热处理过程中能提高共析反应(α→β+Si)的反应进程,完全地将α-Fe2Si5转变为β-FeSi2,形成P型半导体。在混料阶段按Fe∶Si=1∶3的原子比例制备β-FeSi2,XRD分析表明,过量的Si单质提高了Si+ε→β的相转变过程,很大程度上能够消除ε相,增加β-FeSi2的含量。  相似文献   

8.
以等摩尔分数的Al元素替代(In2Te3)0.09(SnTe)0.91中的In元素,利用放电等离子烧结技术、采用相同的工艺制备了(In2Te3)0.09(SnTe)0.91和(In1.9Al0.1Te3)0.09(SnTe)0.912种化合物,并对两者的微观结构和热电性能进行对比。结果表明,掺杂Al元素后,材料的Seebeck系数降低很小,电导率为1×1052.3×1051·m1,是掺杂前的2.43倍,晶格热导率L值大幅度降低。在693K时,掺杂Al后的化合物ZT值达到最大值0.4,是同温度下掺杂前ZT值的2倍。  相似文献   

9.
采用熔融-退火-放电等离子烧结工艺合成P型CoSb3基热电材料,研究Ce掺杂量对CoSb3基热电材料显微组织和热电性能的影响,以及La掺杂对解耦热电关系的作用。结果表明,掺杂元素La和Ce降低了热导率,使La0.1Ce0.8Fe3CoSb12在整个测温区间的热导率保持在1 W/(m·K)左右,对应的最高热电优值在723 K时达到0.45。以磁控溅射法制备Al-Ni涂层,通过对溅射Al-Ni防护涂层的P型La0.1Ce0.8Fe3CoSb12材料热电性能进行测试,发现涂层的介入并未造成材料热电性能的衰退,且涂层与基底结合良好,元素分布均匀。以钎料Ag40Cu60对P型热电元件La0.1Ce0.8Fe3CoSb12与电极片Mo50Cu50接头进行焊接行为研究,发现界面处宏观结合效果良好。  相似文献   

10.
热电发电可直接将热能转变成为电能,是一种颇受青睐的无公害发电方法。这种发电方法即不产生废气、机械振动和噪声,又不需要维护。半导体二硅化铁β-FeSi2原料来源丰富、抗氧化性好且无毒性,是一种在高温(直到1200K)范围很有实用价值的热电材料,但它的热电性能尚须改进。为了改进8-FeSi2的热电性能,提高电阻率、热电动势系数以及减小导热率都是很重要的。  相似文献   

11.
采用真空悬浮熔炼和真空退火方法制备了Fe1-xCoxSi2-0.1at%Cu热电材料。试样的微观组织中包含大量尺寸在1μm左右的小孔和一些裂纹。输运特性测量结果表明,550K时掺杂载流子的热激发达到饱和,700K以上发生本征激发现象。实验发现Co的最佳掺杂量为lat%左右,名义组成为Fe0.97Co0.03Si2-0.1at%Cu的试样的热电性能最好。  相似文献   

12.
金敏 《铸造技术》2023,(1):49-53
利用坩埚下降法成功制备了具有标准Pnma空间群结构的Cu掺杂SnSe晶体,其尺寸为φ18 mm×55 mm,Cu元素在晶体中均匀分布。该晶体为P型半导体材料,电导率在600 K附近具有最低值4.53 S·cm-1,载流子浓度在830 K下达到1.69 cm×1 019 cm,Seebeck系数最大值为739.5μV·K-1,出现在500 K附近。功率因子PF随温度升高始终增加,830 K下为4.80μW·cm-1·K-2。热电性能ZT在800 K附近达到最高值0.83,说明该晶体是一种潜在的中温区热电材料。  相似文献   

13.
采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。  相似文献   

14.
采用机械合金化(MA)结合热压烧结(HP)技术制备了n型Bi2 Te2.85Se0.15热电材料,在常温下测量了电阻率(ρ)、塞贝克系数(α)和热导率(κ)等热电性能参数,考察了掺杂剂AgI的含量(质量百分比分别为0,0.1,0.2,0.3和0.4%)对材料热电性能的影响.结果表明:试样的电阻率和塞贝克系数的绝对值均随AgI掺杂量的提高而增大,热导率则随AgI掺杂量的提高而大幅降低,在AgI掺杂量为0.2%(质量)时有最大热电优值,为2.0×10-3/K.  相似文献   

15.
采用成熟工艺制备了N型、P型调制掺杂型Si80Ge20基固溶体合金及等化学计量比的均匀掺杂型Si80Ge20基固溶体合金,重点研究了两类固溶体合金的热电性能。结果表明:温度为773 K时,N型系列、P型系列,调制掺杂型固溶体合金较均匀掺杂型的功率因子分别提高了13.6%和49.2%,热电优值ZT分别提高了7.9%和12.9%  相似文献   

16.
用悬浮熔炼法制备了含Sm、Mn的P型FeSi2基热电材料。实验结果表明,其电学性能是由掺杂的两种元素共同决定的,Sm对降低样品电阻率的作用较大,而Mn有助于提高样品的热电动势率。要保证有较高功率因子,Mn、Sm掺杂总摩尔分数应小于5%,而Mn的最佳掺杂摩尔分数在1.7%左右。  相似文献   

17.
采用熔融法制备了P型填充式方钴矿化合物Yb_yFe_xCo_(4-x)Sb_(12),并研究了Co位Fe掺杂对该化合物热电传输特性的影响.在300~850 K的温度范围内,测试了化合物的电导率、赛贝克系数和热导率.结果表明,化合物的主要相组成为Yb_yFe_xCo_(4-x)Sb_(12),EPMA结果显示化合物中含有微量FeSb_2和CoSb_2杂质相.化合物的赛贝克系数均为正值,表明为p型半导体.随着Fe掺杂量的增加,化合物的电导率增加,晶格热导率降低,最小室温晶格热导率仅为1.33 W·m~(-1)K~(-1),对于化合物Yb_0.29Fe_1.2Co_2.8Sb_(12),在800 K时获得最大热电优值ZT约为0.67.  相似文献   

18.
新能源材料     
《金属功能材料》2012,(5):51-55
机械合金化。热压及熔淬法制造热电材料BizTe2.85Seo0.15;引入高密度界面法提高Chimney-Ladder化合物热电性能;用NaAISi合成Mn(AI,Si-1一x)2+6固溶体及其热电性能;电弧熔炼法和放电等离子烧结法并用的Ba8AI16Si30基笼形包合物的热电性能;二维晶格缺陷对TiO:一,热导率和电导率的影响;过渡族金属氧化物热电势理论研究;在Ga节点掺Cu对AgGaTe2热电性能的影响;与离子液体复合的(Bj,Sb)2Te3基热电材料;在黄铜型结构AgGaTe2的Ga节点掺杂Cu对热电性能影响;过渡族金属氧化物巨大热电势理论  相似文献   

19.
Sb掺杂对Mg_2Si基化合物热电性能的影响(英文)   总被引:1,自引:0,他引:1  
采用感应熔炼和真空热压的方法制备了Sb掺杂和未掺杂的Mg2Si基热电材料.研究了Sb掺杂对Mg2Si基热电材料的结构以及热电特性的影响.结果表明:通过Sb掺杂使得载流子浓度从3.07x1019 cm-3增加到1.25x1020 cm-3,电子有效质量也相应增加.测试了从室温到800 K下试样的Seebeck系数,电导率和热导率.结果显示,0.3 at%Sb掺杂使得电导率得到显著增加,在783 K时,ZT值达到0.7.  相似文献   

20.
K+掺杂改性的Ca3Co4O9基氧化物热电性能   总被引:1,自引:0,他引:1  
用溶胶-凝胶法和放电等离子烧结(SPS)制备了层片状结构的(Ca1-xKx)3Co4O4陶瓷,烧结块体相对密度可达97%~99%.XRD(X-ray Diffraction)和SEM(Scanning Electronic Microscope)分析结果表明当K的掺杂量x<0.08时为单一的Ca3Co4O9相,SPS烧结可以使样品带有一定的织构取向.在室温至700℃的范围内测量了不同K掺杂量时样品电导率和Seeback系数,测试结果表明,当K的掺入量小于0.06时,随着掺入量的增加,可以显著提高样品的电导率(400℃~700℃)和Seebeck系数.其中,700℃时(K0.06Ca0.94)3Co4O9样品的功率因子P=4.43×10-4W·m.-1K-2,与Ca3Co4O9(P=3.51×10-4W.m.-1K-2)相比提高了26.2%,表明K掺杂是改善Ca3Co4O9高温热电性能的有效途径之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号