首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
用X射线衍射分析,电子显微镜分析和复合材料的性能变化分析,验证聚丙烯/有机土复合材料的纳米尺度效应,可证实聚丙烯纳米复合材料的真实性。  相似文献   

2.
陈兵 《上海塑料》2006,(2):49-52
等通道转角挤出制备自增强等规聚丙烯的结构与性能研究,聚丙烯发泡体系粘度预测模型的确立,PP/POE/纳米CaCO3复合材料流变性能的研究,PP/SBS/纳米CaCO3复合材料结构与性能研究,聚丙烯基杂化材料的动态力学性能与流变行为.  相似文献   

3.
本文以聚丙烯和有机蒙脱土为原料,采用插层复合法制备聚合物/层状硅酸盐纳米复合材料,用透射电镜对复合材料的结构进行表征,测定了复合材料的力学性能,结果表明,用马来酸酐化聚丙烯作界面相容剂,聚丙烯大分子链分子插层进入到有机改性蒙脱土的硅酸盐片层中间,并且聚丙烯/蒙脱土纳米复合材料的力学性能有一定的提高。  相似文献   

4.
聚丙烯实用化技术进展   总被引:2,自引:0,他引:2  
王德禧 《塑料工业》2004,32(2):1-5,17
介绍了近年来聚丙烯的实用化技术进展,包括聚丙烯/无机纳米粘土复合材料、聚丙烯微发泡塑料、成核剂改性聚丙烯材料及长玻纤增强聚丙烯复合材料等的技术进展和产品应用概况。  相似文献   

5.
纳米碳酸钙改性弹性体/聚丙烯的研究进展   总被引:1,自引:0,他引:1  
综述了纳米CaCO3改性弹性体/聚丙烯复合材料的主要研究进展情况,包括:传统弹性体和新型热塑性弹性体在纳米CaC03/聚丙烯的应用,以及增韧增强机理研究等。  相似文献   

6.
PP/TiO2纳米复合材料耐老化性能的研究   总被引:5,自引:2,他引:5  
用纳米TiO2与聚丙烯(PP)共混制得PP/TiO2纳米复合材料,研究了PP/TiO2纳米复合材料的耐老化性能,分析了红外图谱和微观结构。结果表明,PP/TiO2纳米复合材料的耐老化性能较PP有较大程度提高,其微观结构和力学性能也有所改善,且纳米TiO2用量越大,改善效果越明显。  相似文献   

7.
聚丙烯/蒙脱土纳米复合材料研究进展   总被引:1,自引:0,他引:1  
简要介绍了蒙脱+(MMT)的结构、插层原理和表面修饰方法,并介绍了聚丙烯(PP)/MMT纳米复合材料的制备原理和方法。综述了PP/MMT纳米复合材料的国内外研究进展。  相似文献   

8.
聚丙烯/蒙脱土纳米复合材料研究   总被引:1,自引:0,他引:1  
本文综述了聚丙烯/蒙脱土纳米复合材料的特点、制备方法,并对复合材料的结构表征方法作了介绍。  相似文献   

9.
采用纳米无机粒子对茂金属聚乙烯(POE)弹性体增韧聚丙烯(PP)二元共混体系进行改性。从而制得PP/POE/无机纳米粒子三元复合材料。分别探讨了纳米高岭土和纳米碳酸钙对复合材料拉伸性能和冲击性能的影响,并考察了不同纳米粉体的增强效果。  相似文献   

10.
PP/TiO2纳米复合材料的研制及其抗老化机理分析   总被引:16,自引:1,他引:16  
制备了聚丙烯(PP)/TiO2纳米复合材料,用氙灯耐气候试验机对该复合材料进行人工加速老化试验。采用紫外一可见光光谱法分析了纳米TiO2等粉体材料的紫外吸收性能;分析了PP/TiO2纳米复合材料的红外光谱并探讨了抗老化机理;对比研究了纯PP和PP/TiO2纳米复合材料老化期间力学性能的变化规律。结果表明,纳米TiO2能赋予PP优异的耐候性能,延长制品的户外使用寿命。  相似文献   

11.
Both polypropylene (PP) and PP/organo-montmorillonite (OMMT) masterbatch containing antistatic agent (3–9 wt%) were prepared by using co-rotating twin screw extruder followed by injection molding. PP/OMMT masterbatch was prepared by mixing PP, OMMT and maleated PP (PPgMAH). The PP nanocomposites were characterized by using X-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermogravimetry analyzer (TGA), hardness and surface resistivity tests. XRD results indicated that AA could promote the intercalation in PP/OMMT nanocomposites. The decomposition temperature of PP/OMMT/AA nanocomposites is higher than that of PP/OMMT. The hardness, degree of crystallinity and surface resistivity of PP nanocomposites was influenced by the addition of antistatic agent.  相似文献   

12.
Polypropylene (PP) and polypropylene/polypropylene‐g‐maleic anhydride/ organomontmorillonite (PP/PP‐g‐MA/OMMT) nanocomposites were modified with 0.05 to 0.3% (w/w) of the aryl amide β‐nucleator to promote the formation of hexagonal crystal modification (β‐phase) during melt crystallization. The nonisothermal crystallization behavior of PP, PP/PP‐g‐MA/OMMT and β‐nucleated PP/PP‐g‐MA/OMMT nanocomposites were studied by means of differential scanning calorimetry. Structure‐property relationships of the PP nanocomposites prepared by melt compounding were mainly focused on the effect and quantity of the aryl amide nucleator. The morphological observations, obtained from scanning electron microscopy, transmission electron microscopy and X‐ray diffraction analyses are presented in conjunction with the thermal, rheological, and mechanical properties of these nanocomposites. Chemical interactions in the nanocomposites were observed by FT‐IR. It was found that the β‐crystal modification affected the thermal and mechanical properties of PP and PP/PP‐g‐MA/OMMT nanocomposites, while the PP/PP‐g‐MA/OMMT nanocomposites of the study gained both a higher impact strength (50%) and flexural modulus (30%) compared to that of the neat PP. β‐nucleation of the PP/PP‐g‐MA/OMMT nanocomposites provided a slight reduction in density and some 207% improvement in the very low tensile elongation at break at 92% beta nucleation. The crystallization peak temperature (Tcp) of the PP/PP‐g‐MA/OMMT nanocomposite was slightly higher (116°C) than the neat PP (113°C), whereas the β‐nucleation increased the crystallization temperature of the PP/PP‐g‐MA/OMMT/aryl amide to 128°C, which is of great advantage in a commercial‐scale mold processing of the nanocomposites with the resulting lower cycle times. The beta nucleation of PP nanocomposites can thus be optimized to obtain a better balance between thermal and mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

13.
The aim of the work is to extract, purify, and organically modify montmorillonite (MMT) of Lahad Datu, Sabah bentonite. The octadecylamine treated Sabah MMT (S‐OMMT) (2–8 wt%) was then melt blended with polypropylene (PP) and maleated polypropylene (PPgMAH) (10 wt%) via single screw nanomixer extruder followed by injection molding into test samples to examine the mechanical, thermal, and morphological properties of PP/S‐OMMT nanocomposites. Unmodified Sabah MMT (S‐MMT) and commercial grade MMT (Nanomer 1.30P) filled PP nanocomposites were also characterized for comparison purpose. X‐ray diffraction results showed that the interlayer spacing of S‐MMT increased after organic modification as Fourier transform infra‐red and elemental analysis evidenced the presence of octadecylamine. PP/S‐OMMT nanocomposites showed a better dispersion and strength compared to PP/Nanomer 1.30P nanocomposites due to its smaller MMT platelet size. differential scanning calorimetry and Thermogravimetry analysis revealed that the thermal stability and crystallinity of neat PP improved with the addition of all types of MMT. Dynamic mechanical analyzer showed that PP nanocomposites have higher storage modulus (E′) values than the neat PP over the whole temperature range. The new PP/S‐OMMT nanocomposites showed a comparable performance with PP/Nanomer 1.30P nanocomposites exhibiting promising future applications of S‐MMT in polymer/MMT nanocomposites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
采用化学反应法制备了Ziegler-Natta/有机改性蒙脱土复合催化剂,并通过丙烯单体原位插层聚合法制备出聚丙烯/蒙脱土(PP/MMT)纳米复合材料,研究了复合材料的微观结构、热性能以及加工稳定性等。结果表明,原位聚合法制备的复合材料为剥离型纳米复合材料,其中MMT片层以纳米尺寸均匀分散在PP基体中,MMT平均厚度小于10nm;随MMT含量的提高,复合材料的热稳定性提高;原位聚合制备的PP/MMT纳米复合材料在长时间剪切过程中部分MMT会发生自聚集,控制剪切时间可以有效防止MMT的自聚集;原位聚合制备的PP/MMT复合材料(粉料)中,PP以α晶型为主,纳米MMT的引入并不会诱导生成聚丙烯β晶型,复合材料中β晶型的出现与退火条件有关。  相似文献   

15.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
In this article Polypropylene/Polypyrrole (PP/PPy) and Polypropylene/polypyrrole-graphene oxide (PP/PPy-GO) nanocomposites were prepared by melt mixing. PPy nanoparticles and PPy-GO nanocomposite were prepared by chemical polymerization and served as nanofillers. FTIR, XRD and SEM analysis were used for the characterization of PPy and PPy-GO composites. The effects of PPy and PPy-GO loading level on the morphology, tensile and electrical properties of PP-based nanocomposites were examined. It was found that the Young's modulus and tensile strength increased with the increase of nanofiller content. Tensile results also showed that PPy-GO composite significantly affected the mechanical properties of PP based nanocomposites compared to the PPy nanoparticles. It was observed that the addition of 1% wt. PPy-GO into PP, increased the Young's modulus about 30% compared as with pure PP. Electrical conductivity measurements showed that conductivity of PP nanocomposites increased up to 1 × 10?3 S/cm for PP/PPy-GO nanocomposites. It was also observed that PP-g-MA improved the distribution of PPy and PPy-GO nanocomposites and affected the morphology, electrical and mechanical properties of PP-based nanocomposites.  相似文献   

17.
Three types of polypropylene‐grafted silica (PGS‐2 K, PGS‐8 K and PGS‐30 K) with different grafting chain lengths were prepared. After melt‐blending PGS with polypropylene (PP), we studied the PP/PGS interface properties and the influence of PP/PGS interfaces on mechanical properties of nanocomposites. The strong matrix/particle interface was observed in PP/PGS‐30 K nanocomposites with 5 wt % particle loading as evidenced by 2.5 °C increased glass transition temperature (Tg) compared with neat PP, whereas the weak matrix/particle interface was observed in PP/PGS‐2 K nanocomposites with decreased Tg. The variations in the matrix/particle interfacial strength lead to a transition in the yield stress of nanocomposites. Compared with the unfilled PP, the yield stress of the PP/PGS‐2 K nanocomposites is decreased by 0.7 MPa, and the yield stress of the PP/PGS‐30 K nanocomposites is enhanced by 1.4 MPa. In addition, benefiting from good dispersion, the PP/PGS‐masterbatch nanocomposites with a strong matrix/particle interface not only exhibit increased Young's modulus and yield stress, but also the strain at break remains in line with the unfilled PP, which is in contrast to the conventional wisdom that the gain in modulus and strength must be at the expense of the decreased break strain. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45887.  相似文献   

18.
In this study, Ca2+‐montmorillonite (Ca2+‐MMT) and organo‐montmorillonite (OMMT) were modified by three compatibilizers with different degrees of polarity [poly(ethylene glycol) (PEG), alkyl‐PEG, and polypropylene (PP)‐g‐PEG]. PP/MMT nanocomposites were prepared by melt blending and characterized using X‐ray diffraction and transmission electron microscopy. The results showed the degree of dispersion of OMMT in the PP/PP‐g‐PEG/OMMT (PMOM) nanocomposite was considerably higher than those in the PP/PEG/OMMT and PP/alkyl‐PEG/OMMT nanocomposites, which indicated that the dispersion was relative to the compatibility between modified OMMT and PP matrix. Linear viscoelasticity of PP/MMT nanocomposites in melt states was investigated by small amplitude dynamic rheology measurements. With the addition of the modified MMT, the shear viscosities and storage modulus of all the PP/MMT nanocomposites decreased. It can be attributed to the plasticization effect of PEG segments in the three modifiers. This rheological behavior was different from most surfactant modified MMT nanocomposites which typically showed an increase in dynamic modulus and viscosity relative to the polymer matrix. The unusual rheological observations were explained in terms of the compatibility between the polymer matrix and MMT. In addition, the mechanical properties of PP/MMT nanocomposites were improved. A simultaneous increase in the tensile strength and toughness was observed in PP/PMOM nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
In this study, we prepared organically modified silica materials with various particle sizes, in the ranges of micrometer and nanometer, and their polypropylene (PP) composites. The PP micro/nanocomposites were then molded through conventional and microcellular injection molding processes. The effects of silica particle sizes on the structure, mechanical and rheological properties were investigated. The results showed that PP/silica nanocomposites provide better tensile strength than that of foamed nanocomposites. The addition of silica also increased the tensile strength of the nanocomposites, but decreased the tensile strength of microcomposites. Therefore, the tensile strength of PP/silica nanocomposites is better than that of PP/silica microcomposites. The silica particles helped the nanocomposites to develop small cells in the foaming process. Rheological results indicated an increase in the viscosity with the addition of nano silica and micro silica to PP. The viscosity increase for the silica nanocomposites was found greater than that of microcomposites at the same filler content.  相似文献   

20.
采用固相法对黏土进行有机化插层改性,制备出有机黏土;通过熔融插层法制备聚丙烯/有机黏土纳米复合材料。X射线衍射分析表明,固相法改性黏土可以与聚丙烯形成纳米复合材料。利用DSC研究了纳米复合材料的结晶和熔融过程,结果表明:聚丙烯/有机黏土纳米复合材料的结晶温度提高,熔融过程、熔点及结晶度没有明显变化。力学性能测试结果表明:有机黏土含量在3%~5%范围内,纳米复合材料的力学性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号