首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the West African semi-arid tropics (WASAT), continuous cultivation leads to drastically reduced levels of soil organic matter. Such reductions in the level of soil organic matter have resulted in decreased soil productivity. The addition of organic materials either in the form of manures or crop residue has beneficial effects on the soils' chemical and physical properties. For many of the countries in this region, the amounts of nutrients in crops and crop residue are often several orders of magnitude higher than the quantity of the same nutrients applied as fertilizers. The return of the crop residue for soil fertility improvement cannot be overstressed. It is essential that more information on the rates of organic matter decomposition as well as the many reactions between products of organic matter decomposition and the soil under WASAT conditions be made available.  相似文献   

2.
Under semiarid conditions the response of crops to synthetic fertilizers is often reduced. Organic fertilizers can be used to provide a continuous source of nutrients for the crops. The soil nitrogen and crop yield in a rotation of durum wheat (Triticum durum)–fallow-barley (Hordeum vulgare)–vetch (Vicia sativa) were studied during 4 years when synthetic fertilizer (chemical), compost (organic) or no fertilizer (control) were applied in a field with high initial contents of soil NO3–N (> 400 kg N ha−1), phosphorus (22 mg kg−1) and potassium (> 300 mg kg−1). Changes in soil organic matter, phosphorus and potassium were also measured. During the crop period, chemical fertilization significantly increased the content of soil NO3–N in the first 0.30 m of soil with respect to organic fertilization and the control. The yield of wheat and barley was not increased after applying chemical or organic fertilizer with respect to the unfertilized plots. The estimated losses of nitrogen were similar for the three types of fertilization, as well as the uptake of nitrogen for the total biomass produced. The initial levels of organic matter and phosphorus were maintained, even in the plots that were not fertilized, while the potassium decreased slightly. Thus, the rotation and burying of crop residues were enough to maintain the crop yield and the initial content of nutrients.  相似文献   

3.
Restoration of productivity on agricultural soils disturbed by industrial activity is important for agronomic and environmental reasons. Because of the role of organic matter in soil health and quality, organic amendments have been widely used in the reclamation of disturbed soils such as those on abandoned oil and natural gas wellsites. This study examined the effects of one-time applications of alfalfa (Medicago sativa L.) hay or beef cattle (Bos taurus) feedlot manure compost on wheat (Triticum aestivum L.) yield and nutrient uptake on two abandoned natural gas wellsites that had recently been reclaimed in southern Alberta, Canada. The base amendment rate (1×) [dry wt.] was 5.3 Mg ha−1 for compost and 3.1 Mg ha−1 for alfalfa. The five treatment amendment rates of 0, 1×, 2×, 4×, and 8× were soil-incorporated at the wellsites. Yields and plant nutrient uptake were generally higher at Hussar than at Turin, reflecting the higher inherent fertility of the soil at Hussar. Grain yields were similar for alfalfa and compost amendments, indicating that either amendment can be used depending on availability and/or transportation costs. Our results show that spring wheat yields on these reclaimed soils can be optimized at alfalfa and compost rates of no more than 6 and 10 Mg ha−1, respectively. Continued monitoring of crop productivity and soil properties may provide insight into the long-term benefits of alfalfa and compost amendments in wellsite reclamation schemes. Lethbridge Research Centre contribution no. 387-07030.  相似文献   

4.
The fate of nitrogen from incorporated cover crop and green manure residues   总被引:1,自引:0,他引:1  
Nitrogen retention and release following the incorporation of cover crops and green manures were examined in field trials in NE Scotland. These treatments reduced the amounts of nitrate-N by between 10–20 kg ha-1 thereby lowering the potential for leaching and gaseous N losses. However, uptake of N by overwintering crops was low, reflecting the short day-lengths and low soil temperatures associated with this part of Britain. Vegetation that had regenerated naturally was as effective as sown cover crops at taking up N over winter and in returning N to the soil for the following crop. Incorporation of residues generally resulted in lower mineralisation rates and reduced N2O emissions than the cultivation of bare ground, indicating a temporary immobilisation of soil N following incorporation. Emissions from incorporated cover crops ranged from 23–44 g N2O-N ha-1 over 19 days, compared with 61 g N2O-N ha-1 emitted from bare ground. Emissions from incorporated green manures ranged from 409–580 g N2O-N ha-1 over 53 days with 462 g N2O-N ha-1 emitted from bare ground. Significant positive correlations between N2O and soil NO3 - after incorporation (r=0.8–0.9; P<0.001 and r=0.1–0.4; P<0.05 for cover crops and green manures, respectively) suggest that this N2O was mainly produced during nitrification. There was no significant effect of either cover cropping or green manuring on the N content or yield of the subsequent oats crop, suggesting that N was not sufficiently limiting in this soil for any benefits to become apparent immediately. However, benefits of increased sustainability as a result of increased organic matter concentrations may be seen in long-term organic rotations, and such systems warrant investigation.  相似文献   

5.
A long-term field experiment in western Sydney evaluated the effect of source-separated green-waste (garden organics) compost on peri-urban vegetable crop yields and economic returns, compared to farmer practice. Comparisons were made over 10 vegetable crops between a compost (COMP) treatment (one off application of 125 dry t ha?1 of green waste compost at the start and then every five crops, supplemented with urea when required), a mixed (MIX) treatment (one-off compost application of 62.5 dry t ha?1 at start and then every five crops, but with inorganic NPK fertiliser inputs for each crop) and a conventional farmer practice (FP). Both COMP and MIX treatments consistently achieved similar or higher yields than FP, but the yield gains were more pronounced for COMP. COMP and MIX treatments delivered benefit–cost ratios of 3.3 and 2.6 respectively compared to FP over the 10 crops, indicating that this system could deliver economic benefits to growers as well as improve soil quality and the environment. Follow up large applications of compost generated more substantial yield increases in responsive vegetable crops and economic benefits. The substantial capsicum crop yield response provided a classic example of closing a crops ‘yield gap’ through improvements to soil quality with organic inputs, with implications for food security. The COMP treatment lifted the capsicum yield to?~?60 t ha?1, 50% above its perceived maximum potential crop yield for Eastern Australia. The value of larger applications of compost for soil quality, fertiliser savings, crop yield and farm income was apparent.  相似文献   

6.
Increasing land degradation has prompted interest in conservation agriculture which includes growing cover crops. Besides providing soil cover, decaying cover crops may release substantial amounts of nutrients. Decomposition, N and P release from winter cover crops [grazing vetch (Vicia darsycarpa), forage peas (Pisum sativum) and oats (Avena sativa)] were assessed for suitability in a cropping system found in the smallholder irrigation sector of South Africa. Nitrogen and P contribution to maize growth by cover crop residues was also estimated. Decrease in mass of cover crop residues was highest in grazing vetch (7% remaining mass after 124 days) followed by forage peas (16%) and lastly oats (40%). Maximum net mineralized N and P were higher for grazing vetch (84.8 mg N/kg; 3.6 mg P/kg) than for forage peas (66.3 mg N/kg; 2.7 mg P/ha) and oats (13.7 mg N/kg; 2.8 mg P/kg). Grazing vetch and forage pea residues resulted in higher N contribution to maize stover than oat residues. Farmers may use grazing vetch for improvement of soil mineral N while oats may result in enhancement of soil organic matter and reduction land degradation because of their slow decomposition. Terminating legume cover crops a month before planting summer crops synchronizes nutrient release from winter-grown legume cover crops and uptake by summer crops.  相似文献   

7.
One major constraint of the agricultural uses of fly ash (FA) is the low availability of different plant nutrients despite their high occurrence in the total amount. However, degrading FA through increased microbial activity can improve the availability of these nutrients substantially. It has been found that intestines of epigeic earthworms contain a high concentration of different microorganisms. Therefore, in the present study we addressed the effects of vermicomposting technology on the solubility of some micronutrient cations (Fe, Mn, Cu, and Zn) and some heavy metals (Pb, Cd, and Cr) in different combinations of fly ash and organic matter, applied in the form of cow dung (CD). Various combinations of FA and CD were treated with and without an epigeic earthworm (Eisenia fetida) and the solubility of different trace elements in the treatments were estimated periodically. The results revealed that the inclusion of epigeic earthworm Eisenia fetida in different combinations of fly ash and cow dung converted a considerable amount of the micronutrients into bio-available forms. On the other hand, the solubility of heavy metals tended to be reduced by the microorganisms, presumably by formation of some organo-metallic complex. Application of these vermicomposted FA and CD combinations to a red lateritic soil was found to improve the soluble Fe, Mn, Cu, and Zn status of the soil. Furthermore, the use of vermicomposted FA and CD (1:1) in potato cultivation demonstrated that use of this mixture at 10 ton per hectare (t ha−1; fresh weight) was able to compensate 80% of the recommended NPK fertiliser, along with farm yard manure application, without compromising the crop yield.  相似文献   

8.
BACKGROUND: The concentration of ATP in selected samples from the composting process of several organic wastes (municipal solid wastes, wastewater sludge, animal by‐products and cow manure) has been determined in order to characterize the aerobic biological activity of such wastes. RESULTS: The values obtained ranged from 0 (in old stable compost from cow manure) to 0.07 µmol ATP g?1 dry matter in thermophilic samples of municipal solid wastes composting. In general, it was found that ATP levels were in agreement with the stage of the composting process (initial stage, thermophilic period and maturation). On the other hand, ATP concentration correlated well (P < 0.05) with the overall respiration activity during a complete composting process of municipal solid waste at full scale. CONCLUSION: ATP concentration can be used to determine the biological activity of organic solid wastes in different stages of their biological treatment and to predict compost stability prior to soil application. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
10.
One of the major problems of agricultural soils in the tropical regions of the Pacific is the low organic matter content. Because of the hot and humid environment, the soil organic matter (SOM) is minimal due to rapid decomposition. Composted organic material is being applied on agricultural fields as an amendment to provide nutrients and enhance the organic matter content for improving the physical and chemical properties of the cultivated soils. In addition land application of composted material as a fertilizer source effectively disposes of wastes that otherwise are buried in landfills. In our soil program at the University of Guam, we are evaluating the use of organic material as an alternative to synthetic fertilizers. Its goal is to develop management strategies and use available resources for improving crop production while conserving resources and preserving environmental quality. Our case study project is designed to improve soil fertility status by using composted organic wastes and assessing how the nitrogen and other essential nutrients contribute to long-term soil fertility and crop productivity without application of synthetic fertilizers. In our pilot project, compost is produced from wood chips, grinded typhoon debris mixed with animal manure, fish feed, shredded paper and other organic wastes. Mature compost is then applied on the field at the rates of 0, 5, 10 and 20 t/ha as a soil amendment on the eroded cobbly soils of southern Guam. Corn is planted and monitored for growth performance and yield. The effect of land application of composted material on the SOM content and overall soil quality indices are being evaluated in this pilot study.  相似文献   

11.
Enhanced utilization of ecological processes for food and feed production as part of the notion of ecological intensification starts from location-specific knowledge of production constraints. A diagnostic systems approach which combined social-economic and production ecological methods at farm and field level was developed and applied to diagnose extent and causes of the perceived low productivity of maize-based smallholder systems in two communities of the Costa Chica in South West Mexico. Social-economic and production ecological surveys were applied and complemented with model-based calculations. The results demonstrated that current nutrient management of crops has promoted nutrition imbalances, resulting in K- and, less surprisingly N-limited production conditions, reflected in low yields of the major crops maize and roselle and low resource use efficiencies. Production on moderate to steep slopes was estimated to result in considerable losses of soil and organic matter. Poor crop production, lack of specific animal fodder production systems and strong dependence on animal grazing within communal areas limited recycling of nutrients through manure. In combination with low prices for the roselle cash crop, farmers are caught in a vicious cycle of cash shortage and resource decline. The production ecological findings complemented farmers opinions by providing more insight in background and extent of livelihood constraints. Changing fertilizer subsidies and rethinking animal fodder production as well as use of communal lands requires targeting both formal and informal governance structures. The methodology has broader applicability in smallholder systems in view of its low demand on capital intensive resources.  相似文献   

12.
Nutrient budgets may be useful tools for nutrient management of crops especially if they estimate the nutrient fluxes available from a variety of sources including organic and inorganic fertilizer, crop residues and soil organic matter. The aim of the present study was to develop a budget of available nutrients by determining the contribution of mineralized nutrient fluxes and fertilizer input relative to nutrient losses and removal in harvested products in the overall N and P balances. N and P inputs and outputs and available N and P fluxes in the soil were estimated for 3 consecutive maize crops where inputs and outputs were altered by NP fertilizer, compost and stubble removal on a Rhodic Kandiustox. A sensitivity analysis of calculated and measured nutrient budget items was conducted to identify the main factors affecting the accuracy of the nutrient balance calculations. Mineral fertilizer rate was the major factor for maize nutrient budgets as shown by its contribution to N and P balances. Without mineral fertilizer application, soil organic matter (SOM) mineralization was the most important within-season nutrient input. In the case of N, shoot uptake was the main output followed by denitrification. Phosphorus adsorption by the soil was the major P output from the available pools followed by shoot uptake. SOM mineralization maintained the pools of available N and P if stubble of the previous crop was returned. Mineral fertilizer application, which produced surplus balances of N and P, would however, be needed to attain high yield, even with stubble return. The available N and P from compost were not significant inputs in the nutrient balances until year 3. Total N and resin extractable P in soil after five crops supported the calculated nutrient balances indicating the importance of available nutrient fluxes in calculating N and P balances.  相似文献   

13.
Nutrient balances, defined as the difference between input with manures, fertilizers and atmospheric deposition and offtake of nutrients with harvested products in arable cropping systems, need to be positive to compensate for unavoidable losses to the environment, but should be kept at the lowest possible level to minimize emissions or unnecessary accumulation of nutrients in the soil. Data from five consecutive years are reported from a long-term nutrient monitoring experiment with three replicates, managed comparably to conventional farming practice. There were four nutrient treatments (T1–T4). Treatment T1 received chemical fertilizer only. T2 received processed organic manure, supplying 50 per cent of the crop N-requirement, supplemented by chemical fertilizers. In treatments T1 and T2 the soil was bare during winter. In T3 and T4 the crops were fertilized as in T1 and T2, respectively, but nitrogen catch crops were grown in autumn and winter. Averaged over five years, the N-balances were 46 kg N ha-1 y-1 in T1 and T2 and 25 kg ha-1 y-1 in T3 and T4 (atmospheric deposition of 44 kg N ha-1y-1 included). Averaged over all treatments and years, the P-balance was 7 kg ha-1 y-1 and the K-balance -33 kg ha-1 y-1. The initially high soil fertility indices for both P and K declined over the experimental period. Catch crops and organic manure did not affect crop yields or nutrient balances, except that their combination in T4 resulted in 1.5 ton ha-1 extra dry matter yield of sugar beet roots. Between spring and harvest, potato and sugar beet showed positive N balances and the cereals negative N-balances. Sugar beet was the only crop with a positive K-balance. NPK concentrations in plant products were not systematically affected by treatments but varied considerably between seasons. At harvest, on average 63, 71, 75 and 112 kg N ha-1 (0–90 cm) were found after sugar beet, spring wheat, oats and potato, respectively. In November catch crops accumulated on average 39 kg N ha-1 after cereals and 33 and 5 kg ha-1 after potato and sugar beet, respectively. In March catch crops after the cereals contained 4 kg N ha-1 less than in autumn, but after potato and sugar beet N-accumulation in spring had increased to 49 and 29 ha N ha-1, respectively. In spring soil mineral N (0–90 cm) varied across years from 31 to 63 kg ha-1. The results indicate that compliance with a maximum excess of input over offtake, as imposed by future legislation, is feasible for N for cropping systems comparable to the system examined, but that the standard for P will probably turn out to be a tight one.  相似文献   

14.
A variety of process-based models have been developed for predicting nitrogen (N) dynamics in agro-ecosystem; however, no reliable models have been validated for N leaching from soils receiving a long-term application of different types of animal manure composts. The Leaching Estimation and Chemistry Model (LEACHM) was recently modified by incorporating the basic structure of Rothamsted Carbon Model for extending its ability to describe soil organic matter decomposition and subsequent N leaching in soils rich in organic matter. We evaluate the applicability of the modified LEACHM in cropped Yellow soils receiving 10-year application of cattle or swine manure compost in addition to chemical fertilizers, where high-frequency field monitoring data of soil water contents, soil N contents and leachate N concentrations were available for the last 3 years. Particular attention was paid to determine all input parameters from independent measurements, parameterization from known soil properties or databases without optimisation to fit the measured field data. The model reasonably predicted temporal changes in the soil NH4-N and NO3-N contents, and inorganic N concentrations in the leachate as well as their differences due to different manure compost/chemical fertilizer applications. The simulations of leached N concentration yielded a Willmott index of agreement (IA) of 0.62–0.68, with those for soil moisture, soil nitrate content and crop N uptake all within an acceptable IA range. In view of the good performance without site-specific calibrations, the modified LEACHM appears to be a valuable tool for predicting N leaching from cropped soils receiving long-term manure compost applications.  相似文献   

15.
The soil water and N dynamics have been studied during two long fallow periods (between wheat or oilseed rape and a spring crop) in a field experiment in Châlons-en-Champagne (eastern France, 48°50 N, 2°15 E). The experiment involved frequent measurements of soil water, soil mineral N, dry matter and N uptake by cover crops. Water and N budgets were established using Ritchie's model for calculating evapotranspiration in cropped soils and a model (LIXIM) for calculating water drainage, N leaching and N mineralisation in bare soils. During the first autumn and winter, a radish cover crop (grown from September 1994 to January 1995) was compared to a bare soil. During the second period (July 1995 to April 1996), a comparison was carried out between (i) oilseed rape volunteers, (ii) bare soil with two types of oilseed rape residues incorporated into the soil (R0 and R270 residues) and (iii) bare soil without residues incorporation. R0 and R270 residues came from two preceding oilseed rape crops which received two rates of N fertilizer (0 and 270 kg N ha-1).Soil mineral N content was markedly reduced by the presence of radish cover crop or oilseed rape volunteers during autumn. The calculated actual evapotranspiration (AET) did not differ much between treatments, meaning that the transpiration by the cover crop or volunteers was relatively low (100–150 L kg-1 of dry matter). Consequently, nitrate leaching was reduced during the rest of the winter and spring as well as nitrate concentration in the percolating water: 45 vs. 91 mg NO3 - L-1 for radish cover crop and bare soil, respectively. The incorporation of oilseed rape residues to soil also exerted a beneficial but smaller action on reducing the nitrate content in the soil. This effect was due to extra N immobilisation which reached a maximum of about 20 kg N ha-1 in mid-autumn for both types of residues. Nine months after the incorporation of the oilseed rape residues, and comparing to the control soil without residues incorporation, N rich residues induced a significant positive N net effect (+ 9 kg N ha-1) corresponding to 10% of N added whereas for N poor residues no net effect was still obtained at the end of experiment (–3 kg N ha-1, not significantly different from 0).To reduce nitrate leaching during long fallow periods, it is necessary to promote techniques leading to decrease mineral-N contents in the soil during autumn before the drainage period, such as (i) residue incorporation after harvest (without fertiliser-N) and (ii) allowing volunteers to grow or sowing a cover crop just after the harvest of the last main crop.  相似文献   

16.
Since the 1970s, research throughout West Africa showed that low soil organic matter and limited availability of plant nutrients, in particular phosphorus and nitrogen, are major bottlenecks to agricultural productivity, which is further hampered by substantial topsoil losses through wind and water erosion. A few widely recognized publications pointing to massive nutrient mining of the existing crop–livestock production systems triggered numerous studies on a wide array of management strategies and policies suited to improve soil fertility. Throughout Sudano-Sahelian West Africa, the application of crop residue mulch, animal manure, rockphosphates and soluble mineral fertilizers have been shown to enhance crop yields, whereby yield increases varied with the agro-ecological setting and the rates of amendments applied. In more humid areas of Western Africa, the intercropping of cereals with herbaceous or ligneous leguminous species, the installation of fodder banks for increased livestock and manure production, and composting of organic material also proved beneficial to crop production. However, there is evidence that the low adoption of improved management strategies and the lack of long-term investments in soil fertility can be ascribed to low product prices for agricultural commodities, immediate cash needs, risk aversion and labour shortage of small-scale farmers across the region. The wealth of knowledge gathered during several decades of on-station and on-farm experimentation calls for an integration of these data into a database to serve as input variables for models geared towards ex-ante assessment of the suitability of technologies and policies at the scale of farms, communities and regions. Several modelling approaches exist that can be exploited in this sense. Yet, they have to be improved in their ability to account for agro-ecological and socio-economic differences at various geographical scales and for residual effects of management options, thereby allowing scenario analysis and guiding further fundamental and participatory research, extension and political counselling.  相似文献   

17.
禽畜粪便好氧堆肥研究进展   总被引:5,自引:0,他引:5  
规模化禽畜养殖业使得大量的禽畜粪便给城市环境带来了巨大的压力。好氧堆肥是利用好氧微生物作用使禽畜粪便稳定化、无害化、资源化的一种有效方法。由于该法具有速度快、能耗低、占地少、经济实用等优点,近年已成为资源、环保领域的一个研究热点。本文介绍了禽畜粪便好氧堆肥的机理及控制条件如C/N比、填充剂、高效菌种及腐熟指标等。  相似文献   

18.
Organic matter is the life of soil. It enables a soil to perform efficiently its primary function of supporting plant growth. Its endemic deficiency in tropical soils, particularly those under the influence of arid, semiarid and sub-humid climates, is a major factor contributing to their low productivity. Research over the past 30 years, formatted as long-term experiments, has conclusively proven that those treatments and practices that supported organic matter build-up, also favored sustainable productivity. Since sustenance of organic matter necessitates regular additions, bolstering its supplies in sufficient quantities is a strategy suggested for the future. While in-situ cultivation and non-competitive use are the common elements of an overall scheme on reinforcing an organic matter reservoir, traversal routes for harnessing, however, vary with the kind of organic resource being aimed at. For instance: with cattle dung and human excrements, conversion into biogas is considered necessary; farmer participatory appraisal and emphasis on dual purpose legumes are found to be essential in spreading green manures, and non-palatability to cattle with a pre-composting step seem vital to succeed with crop residues. Possible research, development and policy initiatives are outlined to enlarge supply and efficient use of different types of organic resources. (Currently visiting scientist, Center for development research, University of Bonn, Germany) This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Nitrogen (N) and carbon (C) cycles are closely linked in organic farming systems. Use of residues for biogas digestion may reduce N-losses and lead to higher farmland productivity. However, digestion is connected to large losses of organic C. It is the purpose of this paper (1) to compare farming systems based on liquid slurry and solid farmyard manure regarding the N, C and organic dry matter (ODM) inputs and flows, (2) to analyse the effect of digestion on soil N, C and ODM inputs and flows within the cropping system, (3) to assess the effects of organic manure management on biological N2 fixation (BNF), and (4) to assess the effect of biogas digestion on the sustainability of the cropping systems in terms of N and C budgets. The BNF by clover/grass-leys was the most important single N input, followed by the BNF supplied by legume cover cropping. Growth of crops in organic farming systems is very often N limited, and not limited by the soil C inputs. However, balances of N inputs showed that the implemented organic farming systems have the potential to supply high amounts of N to meet crop N demand. The level of plant available N to non-legume main crops was much lower, in comparison to the total N inputs. Reasons were the non-synchronized timing of N mineralization and crop N demand, the high unproductive gaseous N losses and an unfocussed allocation in space and time of the circulating N within the crop rotation (e.g. allocation of immobile manures to legumes or of mobile manures to cover crops). Simultaneously, organic cropping systems very often showed large C surpluses, which may be potentially increased the N shortage due to the immobilization of N. Soil organic matter supply and soil humus balance (a balance sheet calculated from factors describing the cultivation effects on humus increasing and humus depleting crops, and organic manure application) were higher in cropping systems based on liquid slurry than in those based on solid farmyard manure (+19%). Simultaneously, soil N surplus was higher due to lower gaseous N losses (+14%). Biogas digestion of slurry had only a very slight effect on both the soil N and the soil C budget. The effect on the N budget was also slight if the liquid slurry was stored in closed repositories. Digestion of residues like slurry, crop residues and cover crops reduced in a mixed farming system the soil C supply unilaterally (approximately −33%), and increased the amounts of readily available N (approximately +70–75%). The long-term challenge for organic farming systems is to find instruments that reduce N losses to a minimum, to keep the most limiting fraction of N (ammonia-N) within the system, and to enhance the direct manuring effect of the available manures to non-legume main crops.  相似文献   

20.
Crop rotations and reduction in tillage are commonly recommended for sustained crop production and enhancing soil quality. Our objective was to evaluate the long-term effects of cropping systems (1968–1992) on soil structure, carbon storage and the quality of soil organic matter. The study was conducted on a silt clay loam soil (Typic Cryoboralf) near Beaverlodge, Alberta, The cropping systems were: (a) continuous barley (Hordeum vulgare L.) (CB); (b) continuous bromegrass (Bromus inermiss Leyess.) (CG); (c) continuous forage legume (Medicago sativa L. until 1977, and Trifolium pratense L. since 1978) (CL); and (d) 3 years of bromegrass-legume forage alternating with 3 years of barley (RF). Our data showed that the CG and CL treatments had more stable aggregates with greater mean weight diameter (MWD) than soil under continuous barley. Organic C, total N and the light fraction in soil under CG and CL were higher than those of the other two treatments. Soil under CG had the highest and CB the lowest amounts of acid-hydrolyzable monosacchrides (comprising glucose, arabinose, xylose, mannose and galactose). Higher galactose + mannose concentration in soil under CG indicated a higher soil microbiological activity. Microbial biomass C and N followed the trend among treatments in whole and light fraction organic matter, and total extracted sugars. Soil organic matter 13C-NMR spectroscopy showed that: (i) soil under CB contained the highest amounts of aromatic and the lowest content of aliphatic-C, (ii) soil under CL had the lowest phenolic-C and the least aromaticity, and (iii) soil under CG and RF had the highest amounts of aliphatic-C which includes labile substances such as amino acids and carbohydrates, indicating an improvement in the quality of organic matter. It is concluded that perennial forage crops can improve soil structure and soil organic matter quality and quantity as compared with cereal monoculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号