首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 77 毫秒
1.
进化算法是模拟自然界生物进化的启发式算法,具有良好的搜索能力和灵活性且广泛用于复杂优化问题的求解,但在求解过程中默认问题先验知识为零,然而由于问题很少孤立存在,解决单一任务积累的经验可迁移至其他相关任务。进化迁移优化算法利用相关领域的知识学习和迁移,实现了更好的优化效率和性能。介绍进化迁移优化算法的基本分类,从源任务选择、知识迁移、缩小搜索空间差异、进化算法搜索、进化资源分配等5个角度出发对主流进化迁移优化算法的核心策略和优劣势进行梳理和分析。通过中国知网和WOS平台对2014年至2021年的进化迁移优化相关文献进行检索,运用知识图谱进行数据挖掘、信息处理、知识计量和图形绘制,根据进化迁移优化的发展趋势和经验分析总结了其面临的主要挑战和未来研究方向。  相似文献   

2.
胡旺  张鑫 《计算机科学》2012,39(4):193-195
随机优化的PSO只利用了进化过程中的上一时刻t的速度v(t)和位置x(t)信息,以及个体最优值Pi和群体最优值Pg,缺乏对待优化目标函数特征的充分认识,导致了后期进化过程的长期停滞现象。PSO在长期进化过程中,尤其是在经历了大量函数评估次数的进化后期,待优化的目标函数的性态特征可以从进化迭代过程信息中得到了解。通过采集学习PSO进化过程中的目标函数的解分布特征信息,使PSO可以利用这些特征信息来控制部分粒子的重新初始化过程和交叉选择过程,以及在参数选择中平衡探索模式和开采模式。实验结果表明,利用了进化过程信息的PSO可以增加种群的多样性,从而获得更高的优化精度和更少的期望迭代次数,虽然其轻微地增加了进化过程特征采集的时间和空间复杂性。  相似文献   

3.
针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法。该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性。实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿。  相似文献   

4.
针对配电网网架规划问题,在基本微分进化算法基础上,引入改进机制,提出一种基于改进微分进化算法的电力系统无功优化算法。新算法通过参考粒子群算法惯性权重思想,引入惯性加权系数,在计算初期能够维持个体的多样性,后期能够加快算法的收敛速度,提高了微分进化算法的性能。将该算法应用于电力系统无功优化中,仿真结果表明:使用该算法优化的网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。  相似文献   

5.
一类基于物种迁移优化的进化算法   总被引:6,自引:0,他引:6  
借鉴自然界中的物种迁移机制,提出一类基于物种迁移优化的进化算法.该算法是根据生态系统中物种分布的迁移模型而提出的一种优化算法.参考其他智能算法的思想,通过物种迁移实现信息交换和共享,从而完成进化过程.讨论了物种迁移优化算法的基本原理和实现过程,同时进行一些基准函数的性能测试.实验结果表明所提出的算法是有效的,具有一定的参考和应用价值.  相似文献   

6.
针对粒子群优化算法在优化多极值点复杂问题时容易陷入局部极值的不足,提出一种新的分阶段进化的粒子群优化算法。该方法进化过程分为两个阶段,每个阶段对应一个不同的模型,通过结合这两种模型的各自优点有效地降低群体陷入局部最优。仿真实验结果表明,对于复杂多极值函数优化问题,本文算法比标准粒子群算法的寻优能力更强。  相似文献   

7.
针对目前在线学习路径优化方法存在学习路径与学习者匹配度不高的问题,首先构建在线学习路径的多维信息特征映射模型(MIFMM),该模型根据学习者与学习资源的多维信息特征建立,融合了kolb学习风格和学习资源类型信息;然后设计双映射二进制粒子群优化算法(DMBPSO),DMBPSO算法根据进化因子ef将学习路径推荐过程分为收敛和跳出局部最优两种进化状态,采用与进化状态特征相匹配的映射函数选择策略,并对惯性权重进行动态非线性调整,提高学习路径推荐性能;接着将MIFMM模型与DMBPSO算法相融合提出基于多维信息特征映射模型的在线学习路径优化方法(MIFMM-POA);最后将MIFMM-POA方法与其他4种粒子群算法为核心的学习路径优化方法相比较,从寻优精度、寻优过程与寻优时间3个角度进行分析,实验表明MIFMM-POA方法是优化学习路径的有效方法.  相似文献   

8.
针对种群多样性对粒子群算法的性能影响,提出了一种基于差异进化思想的粒子群算法。该算法采用多生态子群社会结构,利用一种新的全信息粒子作为信息交互的渠道,通过进化过程中的种群衰落监控指导子群间的差异融合,有利于优秀个体的产生,增加粒子间的差异性,提高种群整体品质和算法的收敛性能。最后对八个测试函数进行实验仿真,并与六个改进粒子群算法进行多方面对比。实验结果表明,该算法有效地保持了种群的多样性,在保证收敛速度的同时大幅提高了算法的收敛精度,从理论和实验仿真两个方面证明了算法有很强的全局搜索能力。  相似文献   

9.
基于混沌和差分进化的混合粒子群优化算法   总被引:4,自引:0,他引:4  
刘建平 《计算机仿真》2012,29(2):208-212
研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到种群初始化操作中。在算法进化过程中,通过一种粒子早熟判断机制,在基本粒子群优化算法中引入了差分变异、交叉和选择操作,对早熟粒子个体进行差分进化操作,从而维持了种群的多样性并有效避免了算法陷入局部最优。仿真结果表明,相比于粒子群优化算法和差分进化算法(DE),CDEHPSO算法具有收敛速度快、搜索能力强的优点。  相似文献   

10.
韩红桂  徐子昂  王晶晶 《控制与决策》2023,38(11):3039-3047
多任务粒子群优化算法(multi-task particle swarm ptimization, MTPSO)通过知识迁移学习,具有快速收敛能力,广泛应用于求解多任务多目标优化问题.然而, MTPSO难以根据种群进化状态自适应调整优化过程,容易陷入局部最优,收敛性能较差.针对此问题,利用强化学习的自我进化与预测能力,提出一种基于Q学习的多任务多目标粒子群优化算法(QM2PSO).首先,设计粒子群参数动态更新方法,利用Q学习方法在线更新粒子群算法的惯性权重和加速度参数,提高当前粒子收敛到Pareto前沿的能力;其次,提出基于柯西分布的突变搜索策略,通过全局和局部交替搜索多任务最优解,避免算法陷入局部最优;最后,设计基于正向迁移准则的知识迁移方法,采用Q学习方法更新知识迁移率,改善知识负迁移现象.与已有经典算法的对比实验结果表明所提出的QM2PSO算法具有更优越的收敛性.  相似文献   

11.
标准量子行为的粒子群优化(Quantum-behaved particle swarm optimization,QPSO)算法依然存在早熟收敛的缺点,针对此问题,提出了一种改进的量子粒子群算法(Particle swarm optimization based on quantum,PSO-Q).在PSO-Q算法中,采用分组策略基于不同的更新公式同时提高局部搜索和全局搜索能力,并且共享组间有用的信息,达到探索与开发能力的平衡.在不降低搜索精度的情况下,分组策略扩大了种群搜索过程中的搜索范围,其中一组保持QPSO搜索方法的基本搜索能力,主要开发已有搜索空间.另外一组共享整个群里的有效信息,增加新领域探索能力,可以避免种群多样性的不断下降.在标准测试函数的对比实验中,仿真结果表明该算法具有较强的搜索能力并且达到了较高的优化精度.  相似文献   

12.
For multi-objective optimization problems, particle swarm optimization (PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space (the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, \begin{document}$ \varepsilon $\end{document}-Pareto active learning (\begin{document}$ \varepsilon $\end{document}-PAL) method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter \begin{document}$ \varepsilon $\end{document}. Therefore, a greedy search method is presented to determine the value of \begin{document}$ \varepsilon $\end{document} where the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines (MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization (MOPSO) algorithms.  相似文献   

13.
针对粒子群算法(PSO)种群多样性低和易于陷入局部最优等问题,提出一种粒子置换的双种群综合学习PSO算法(PP-CLPSO).根据PSO算法的收敛特性和Logistic映射的混沌思想,设计并行进化的PSO种群和混沌化种群,结合粒子编号机制,形成双种群系统中粒子的同号结构和同位结构,其中粒子的惯性权重根据适应度值自适应调...  相似文献   

14.
人脸识别研究的目标主要有两个,一是提高识别正确率,二是降低训练与识别时间.信息熵等方法主要取决于参数选择,然而传统的优化算法难以解决此问题.粒子群算法等智能搜索技术可在较少的时间内给出问题的近似解.动态粒子群优化算法是在经典的微粒群算法的基础上所提出的一种高效的收敛性、稳定性的进化算法.采用动态粒子群算法对信息熵优化寻找最优参数,并结合特征提取方法,用于人脸图像的识别中,为人脸识别问题的研究开辟了新的途径.最后通过仿真实验得出结论表明,既减少了计算复杂度,降低训练与识别时间,又保证实时性,提高识别正确率,得到了理想的结果.  相似文献   

15.
张千里  李星 《计算机工程》2006,32(21):33-34
模糊模拟通常用于模糊规划中。该文提出了基于粒子群优化算法(PSO)的模糊模拟方法,通过这一方法,可以用来计算可能值以及临界值。PSO是一种演化算法,它能够有效地进行全局搜索。试验表明,基于PSO的模糊模拟有更好的性能。  相似文献   

16.
基于蚁群粒子群融合的机器人路径规划算法   总被引:2,自引:0,他引:2  
针对复杂环境下中移动机器人路径规划问题,提出了一种基于蚁群粒子群融合的路径规划算法。该算法首先利用粒子群路径规划的环境建模方法快速规划出起始点到目标点的初始路径。然后根据产生的路径进行信息素的分配,最后经改进的蚁群算法进行进一步寻优,从而找出最优路径。经仿真证明,该方法在寻得最优路径的基础上可大大降低寻优的时间,尤其是对于复杂环境下的路径规划,其效果尤为明显。  相似文献   

17.
提出一种改进的粒子群算法,即将微分进化算法与粒子群算法相结合,在更新粒子位置之前,加入微分进化算法,微分进化算法在变异时,考虑了粒子群算法中当前所寻找到的个体粒子所经过的最优位置及其整个粒子群所经历过最优位置,使粒子的进化具有了一定的方向性.利用典型函数证明了该方法具有较好的全局收敛性和收敛精度.将其应用在水轮机的调速系统参数寻优中,通过二次优化,有效地改善水轮机控制系统过渡过程的动态性能,很好地缓解了该工况下稳定性与抗负荷扰动能力的矛盾.  相似文献   

18.
针对未知环境中无人机可视图有限的路径规划问题,提出了一种基于凸优化的粒子群算法(Particle swarm optimization,PSO)进行路径点选取。在迭代寻优过程中以凸优化求解出的轨迹、避障以及到达终点距离等为元素设计粒子群的适应度函数,在获得最优路径点后再将路径点之间的轨迹显示出来。将所得轨迹作为同时定位与地图创建(Simultaneous localization and mapping,SLAM)的一部分来建立更加可信的环境地图。理论分析和实验仿真结果表明,与其他智能算法以及基于采样的路径规划算法相比,基于凸优化的粒子群算法可以有效地提高路径规划的效率以及减少规划路径的长度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号