共查询到20条相似文献,搜索用时 0 毫秒
1.
K.N.V.D. Sarath Vadlamani Ravi 《Engineering Applications of Artificial Intelligence》2013,26(8):1832-1840
In this paper, we developed a binary particle swarm optimization (BPSO) based association rule miner. Our BPSO based association rule miner generates the association rules from the transactional database by formulating a combinatorial global optimization problem, without specifying the minimum support and minimum confidence unlike the a priori algorithm. Our algorithm generates the best M rules from the given database, where M is a given number. The quality of the rule is measured by a fitness function defined as the product of support and confidence. The effectiveness of our algorithm is tested on a real life bank dataset from commercial bank in India and three transactional datasets viz. books database, food items dataset and dataset of the general store taken from literature. Based on the results, we infer that our algorithm can be used as an alternative to the a priori algorithm and the FP-growth algorithm. 相似文献
2.
Neural Computing and Applications - The most challenging issues in association rule mining are dealing with numerical attributes and accommodating several criteria to discover optimal rules without... 相似文献
3.
In this paper, classification rule mining which is one of the most studied tasks in data mining community has been modeled as a multi-objective optimization problem with predictive accuracy and comprehensibility objectives. A multi-objective chaotic particle swarm optimization (PSO) method has been introduced as a search strategy to mine classification rules within datasets. The used extension to PSO uses similarity measure for neighborhood and far-neighborhood search to store the global best particles found in multi-objective manner. For the bi-objective problem of rule mining of high accuracy/comprehensibility, the multi-objective approach is intended to allow the PSO algorithm to return an approximation to the upper accuracy/comprehensibility border, containing solutions that are spread across the border. The experimental results show the efficiency of the algorithm. 相似文献
4.
Debjani Chakraborty Debashree Guha Bapi Dutta 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2016,20(6):2245-2259
In this paper, a fuzzy multi-objective programming problem is considered where functional relationships between decision variables and objective functions are not completely known to us. Due to uncertainty in real decision situations sometimes it is difficult to find the exact functional relationship between objectives and decision variables. It is assumed that information source from where some knowledge may be obtained about the objective functions consists of a block of fuzzy if-then rules. In such situations, the decision making is difficult and the presence of multiple objectives gives rise to multi-objective optimization problem under fuzzy rule constraints. In order to tackle the problem, appropriate fuzzy reasoning schemes are used to determine crisp functional relationship between the objective functions and the decision variables. Thus a multi-objective optimization problem is formulated from the original fuzzy rule-based multi-objective optimization model. In order to solve the resultant problem, a deterministic single-objective non-linear optimization problem is reformulated with the help of fuzzy optimization technique. Finally, PSO (Particle Swarm Optimization) algorithm is employed to solve the resultant single-objective non-linear optimization model and the computation procedure is illustrated by means of numerical examples. 相似文献
5.
This paper suggests integrating a unification factor into particle swarm optimization (PSO) to balance the effects of cognitive and social terms. The resultant unified particle swarm (UPS) moves particles toward the center of its personal best and the global best. This improves on PSO, which moves particles far beyond the center. Widely used benchmark functions and four types of experiments demonstrate that the proposed UPS uses slightly more computational time than PSO to attain significantly higher efficiency and, usually, better solution effectiveness and consistency than PSO. Robust performance was further demonstrated by the significantly higher efficiency and better solution effectiveness and stability achieved by the UPS, as compared to the PSO and its variants. Outstandingly, convergence speeds for the proposed UPS were very good on the 13 benchmark functions examined in experiment 1, demonstrating the correct movement of UPS particles toward convergence. 相似文献
6.
Bilal Alatas Erhan Akin 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(12):1205-1218
This paper proposes a novel particle swarm optimization algorithm, rough particle swarm optimization algorithm (RPSOA), based
on the notion of rough patterns that use rough values defined with upper and lower intervals that represent a range or set
of values. In this paper, various operators and evaluation measures that can be used in RPSOA have been described and efficiently
utilized in data mining applications, especially in automatic mining of numeric association rules which is a hard problem. 相似文献
7.
With the help of grey relational analysis, this study attempts to propose two grey-based parameter automation strategies for particle swarm optimization (PSO). One is for the inertia weight and the other is for the acceleration coefficients. By the proposed approaches, each particle has its own inertia weight and acceleration coefficients whose values are dependent upon the corresponding grey relational grade. Since the relational grade of a particle is varying over the iterations, those parameters are also time-varying. Even if in the same iteration, those parameters may differ for different particles. In addition, owing to grey relational analysis involving the information of population distribution, such parameter automation strategies make an attempt on the grey PSO to perform a global search over the search space with faster convergence speed. The proposed grey PSO is applied to solve the optimization problems of 12 unimodal and multimodal benchmark functions for illustration. Simulation results are compared with the adaptive PSO (APSO) and two well-known PSO variants, PSO with linearly varying inertia weight (PSO-LVIW) and PSO with time-varying acceleration coefficients (HPSO-TVAC), to demonstrate the search performance of the grey PSO. 相似文献
8.
9.
Dispersed particle swarm optimization 总被引:5,自引:0,他引:5
In particle swarm optimization (PSO) literatures, the published social coefficient settings are all centralized control manner aiming to increase the search density around the swarm memory. However, few concerns the useful information inside the particles' memories. Thus, to improve the convergence speed, we propose a new setting about social coefficient by introducing an explicit selection pressure, in which each particle decides its search direction toward the personal memory or swarm memory. Due to different adaptation, this setting adopts a dispersed manner associated with its adaptive ability. Furthermore, a mutation strategy is designed to avoid premature convergence. Simulation results show the proposed strategy is effective and efficient. 相似文献
10.
Quantum-behaved particle swarm optimization (QPSO) is a recently developed heuristic method by particle swarm optimization (PSO) algorithm based on quantum mechanics, which outperforms the search ability of original PSO. But as many other PSOs, it is easy to fall into the local optima for the complex optimization problems. Therefore, we propose a two-stage quantum-behaved particle swarm optimization with a skipping search rule and a mean attractor with weight. The first stage uses quantum mechanism, and the second stage uses the particle swarm evolution method. It is shown that the improved QPSO has better performance, because of discarding the worst particles and enhancing the diversity of the population. The proposed algorithm (called ‘TSQPSO’) is tested on several benchmark functions and some real-world optimization problems and then compared with the PSO, SFLA, RQPSO and WQPSO and many other heuristic algorithms. The experiment results show that our algorithm has better performance than others. 相似文献
11.
Cellular particle swarm optimization 总被引:1,自引:0,他引:1
This paper proposes a cellular particle swarm optimization (CPSO), hybridizing cellular automata (CA) and particle swarm optimization (PSO) for function optimization. In the proposed CPSO, a mechanism of CA is integrated in the velocity update to modify the trajectories of particles to avoid being trapped in the local optimum. With two different ways of integration of CA and PSO, two versions of CPSO, i.e. CPSO-inner and CPSO-outer, have been discussed. For the former, we devised three typical lattice structures of CA used as neighborhood, enabling particles to interact inside the swarm; and for the latter, a novel CA strategy based on “smart-cell” is designed, and particles employ the information from outside the swarm. Theoretical studies are made to analyze the convergence of CPSO, and numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on benchmark test functions. 相似文献
12.
13.
Co-evolutionary particle swarm optimization to solve constrained optimization problems 总被引:1,自引:0,他引:1
Xiaoli Kou Sanyang Liu Jianke Zhang Wei Zheng 《Computers & Mathematics with Applications》2009,57(11-12):1776
This paper presents a co-evolutionary particle swarm optimization (CPSO) algorithm to solve global nonlinear optimization problems. A new co-evolutionary PSO (CPSO) is constructed. In the algorithm, a deterministic selection strategy is proposed to ensure the diversity of population. Meanwhile, based on the theory of extrapolation, the induction of evolving direction is enhanced by adding a co-evolutionary strategy, in which the particles make full use of the information each other by using gene-adjusting and adaptive focus-varied tuning operator. Infeasible degree selection mechanism is used to handle the constraints. A new selection criterion is adopted as tournament rules to select individuals. Also, the infeasible solution is properly accepted as the feasible solution based on a defined threshold of the infeasible degree. This diversity mechanism is helpful to guide the search direction towards the feasible region. Our approach was tested on six problems commonly used in the literature. The results obtained are repeatedly closer to the true optimum solution than the other techniques. 相似文献
14.
A Cooperative approach to particle swarm optimization 总被引:28,自引:0,他引:28
The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of problems, including neural network training. This paper presents a variation on the traditional PSO algorithm, called the cooperative particle swarm optimizer, or CPSO, employing cooperative behavior to significantly improve the performance of the original algorithm. This is achieved by using multiple swarms to optimize different components of the solution vector cooperatively. Application of the new PSO algorithm on several benchmark optimization problems shows a marked improvement in performance over the traditional PSO. 相似文献
15.
Monitoring of particle swarm optimization 总被引:4,自引:1,他引:3
In this paper, several diversity measurements will be discussed and defined. As in other evolutionary algorithms, first the
population position diversity will be discussed followed by the discussion and definition of population velocity diversity
which is different from that in other evolutionary algorithms since only PSO has the velocity parameter. Furthermore, a diversity
measurement called cognitive diversity is discussed and defined, which can reveal clustering information about where the current
population of particles intends to move towards. The diversity of the current population of particles and the cognitive diversity
together tell what the convergence/divergence stage the current population of particles is at and which stage it moves towards. 相似文献
16.
Stefan Lessmann Marco Caserta Idel Montalvo Arango 《Expert systems with applications》2011,38(10):12826-12838
The paper is concerned with practices for tuning the parameters of metaheuristics. Settings such as, e.g., the cooling factor in simulated annealing, may greatly affect a metaheuristic’s efficiency as well as effectiveness in solving a given decision problem. However, procedures for organizing parameter calibration are scarce and commonly limited to particular metaheuristics. We argue that the parameter selection task can appropriately be addressed by means of a data mining based approach. In particular, a hybrid system is devised, which employs regression models to learn suitable parameter values from past moves of a metaheuristic in an online fashion. In order to identify a suitable regression method and, more generally, to demonstrate the feasibility of the proposed approach, a case study of particle swarm optimization is conducted. Empirical results suggest that characteristics of the decision problem as well as search history data indeed embody information that allows suitable parameter values to be determined, and that this type of information can successfully be extracted by means of nonlinear regression models. 相似文献
17.
This study intends to apply particle swarm optimization algorithm to cluster analysis for investigating market segmentation of Taiwanese tourists based on their motivation to visit Indonesia. In addition, Taiwanese tourists’ preference of several types of tourism destinations offered in Indonesia will also be studied. According to the cluster analysis results, we will propose marketing strategy based on market segmentation and tourists’ preferences revealed. The computational results reveal that there were four clusters formed. Moreover, by using perceptual map, it was also known that most of respondents tend to visit heritage, culture, and nature-based tourism destinations offered in Indonesia. 相似文献
18.
适应性粒子群寻优算法 总被引:5,自引:0,他引:5
社会性的群体寻优是秩序与混沌之间的平衡,适应性微粒群寻优算法(APSO)是在标准PSO上添加反映适应性的随机项,并引入小概率因子,使微粒飞行到粒子群的中心,平衡秩序和随机两个行为.APSO算法的本质是在有序的决策中始终引入随机的、不可预测的决定,从而使得寻优的决策尽可能模拟社会性群体寻优的复杂行为.典型复杂函数优化的仿真结果表明,APSO算法具有较好的稳定性. 相似文献
19.
针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法.该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力.通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高. 相似文献
20.
改进的粒子群优化算法 总被引:2,自引:2,他引:2
为改善基本粒子群的全局、局部搜索能力和收敛速度以及计算精度,基于经典PSO方法和量子理论基础之上,提出了一种改进的基于量子行为的PSO算法--cQPSO算法.新算法中,采用全同粒子系更新粒子位置,并引用混沌思想,对每个粒子进行混沌搜索,试图改善粒子的全局、局部搜索能力和收敛速度以及计算精度.对经典函数的测试计算表明,改进算法的性能优于经典的PSO算法、基于量子行为的PSO算法. 相似文献