首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless sensor networks (WSN) are event‐based systems that rely on the collective effort of several sensor nodes. Reliable event detection at the sink is based on collective information provided by the sensor nodes and not on any individual sensor data. Hence, conventional end‐to‐end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Moreover, the reliability objective of WSN must be achieved within a certain real‐time delay bound posed by the application. Therefore, the WSN paradigm necessitates a collective delay‐constrained event‐to‐sink reliability notion rather than the traditional end‐to‐end reliability approaches. To the best of our knowledge, there is no transport protocol solution which addresses both reliability and real‐time delay bound requirements of WSN simultaneously. In this paper, the delay aware reliable transport (DART) protocol is presented for WSN. The objective of the DART protocol is to timely and reliably transport event features from the sensor field to the sink with minimum energy consumption. In this regard, the DART protocol simultaneously addresses congestion control and timely event transport reliability objectives in WSN. In addition to its efficient congestion detection and control algorithms, it incorporates the time critical event first (TCEF) scheduling mechanism to meet the application‐specific delay bounds at the sink node. Importantly, the algorithms of the DART protocol mainly run on resource rich sink node, with minimal functionality required at resource constrained sensor nodes. Furthermore, the DART protocol can accommodate multiple concurrent event occurrences in a wireless sensor field. Performance evaluation via simulation experiments show that the DART protocol achieves high performance in terms of real‐time communication requirements, reliable event detection and energy consumption in WSN. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
无线传感器网络是一种由大量廉价微型传感器节点组成,并通过无线通信方式形成的多跳自组织网络,可用于对其部署区域的某些物理量进行智能监测。由于传感器节点数目较大,MAC协议是保证无线传感器网络高效通信的关键网络协议之一。另一方面,因为传感器节点受到电源能量有限、通信能力有限、计算和存储能力有限等现实条件的限制,传感器网络中的MAC协议又具有一些独特之处。对无线传感器网络MAC协议的研究现状进行较全面的考察,分析比较其中的几种典型MAC协议,并提出了该领域的发展趋势和未来工作的一些思路。  相似文献   

3.
星型无线传感器网络的应用研究   总被引:3,自引:2,他引:1  
万时光  马小铁  李凯 《通信技术》2009,42(3):173-176
文中详细介绍了星型无线传感器网络的拓扑结构,并给出了由温度传感器DS18820、单片机AT89LV51和PTR8000组成的传感器节点硬件平台和由嵌入式通用处理器S3C2410、单片机AT89LV51和无线模块PTR8000组成的;r-聚节点硬件平台;在软件系统的设计上,根据具体的网络拓扑结构和硬件平台,设计了传感器节点与汇聚节点之间串行无线通信协议及汇聚节点内部主从微处理器之间串行通信协议,详细阐述了数据在系统中的流动过程及传感器节点和汇聚节点软件系统的设计。  相似文献   

4.
Transmission and distribution systems for electricity have undergone a technological revolution in terms of operation and management using computer networks, automation, remote sensing, and information and communication technologies to improve the performance of digital electronic meters. This work describes the integration of a wireless sensor networks (WSNs)–based communication system with an electrical energy‐measurement structure, to verify the feasibility of large‐scale installation of intelligent electronic meters in low‐voltage consumer units. The study is based on simulations, using Castalia, considering 2 scenarios, the first in a flat network and the second in a hierarchical network of WSNs to analyze the feasibility of sending messages from intelligent electronic meters to the concessionaires through a ZigBee network.In addition, the time requirements of the IEC 61850 standard for sending and receiving manufacturing message specifications and generic object‐oriented substation event type messages are verified. This work demonstrated the technical feasibility of using WSNs for different node densities by region and evaluated the location of the sink node, and adequate infrastructures for WSNs were found. This extends time checks for both vertical (usually for supervision) and horizontal (used for protection) messages. The proposed model has great potential to use a WSN infrastructure and to evaluate if this infrastructure allows data transmission of the protocols used in smart grids, mainly verifying the requirements of transmission times required by each application.  相似文献   

5.
To improve the efficiency of electricity distribution, smart grids allow communication between their devices. Pieces of legacy equipment operating in the distribution network do not communicate using any commercial protocol, such as DNP3, IEC 61850, or Modbus. Thus, herein, a middleware is proposed to allow the integration of the legacy electrical equipment into a smart grid using wireless sensor networks (WSNs). Each piece of legacy electrical equipment is connected to a sensor node, and the WSN sink node runs a middleware to enable the integration of this device with a smart grid, according to the commercial communication protocols. The middleware model is proposed to guide users in the development of a WSN‐based system for integrating electrical equipment into a smart grid. The middleware was validated in a real environment, which is related to the concept of power metering. Experiments were performed using the software supervisory control and data acquisition and distributed test manager to validate the communication between the electrical equipment and the computer of the power substation control centre.  相似文献   

6.
Energy-efficiency is an essential feature of wireless sensor networks (WSNs) where the longevity of autonomous sensor nodes is limited by their battery life and/or energy-harvesting capability. Base-station-initiated optical wireless communication with nodes equipped with a passive optical transmitter in the form of a corner cube retroreflector (CCR) provides sensor acquisition with no energy expenditure on the part of the sensor node itself and is therefore an attractive option for WSN. However, the return signal from an illuminated sensor node is a stochastic variable dependant on fabrication parameters, ambient conditions and receiver noise so that the sensor acquisition process is inherently error-prone. In this paper we propose an energy-aware, base station-initiated interrogation scheme based on exponentially increasing beam scan areas, that takes into consideration the error-prone trait of CCR-outfitted sensor nodes. We analyse the scheme performance subject to different values of signal variance and various cost functions. We extend the analysis to address the circumstance of a spatially-limited sensor-failure event, such as may be caused by deliberate tampering or by environmental factors. We show that agile beam-steering on the basis of accrued knowledge of contaminated sensor distributions promotes energy-conserving acquisition. The validity of a Poisson spatial distribution model for the sensor dispersion is discussed and the impact of this initial assumption on acquisition error is demonstrated.  相似文献   

7.
无线传感器网络通信协议   总被引:1,自引:0,他引:1  
集成了微机电系统、无线通信和现代网络等多项技术而形成的无线传感器网络是一种全新的信息获取和处理模式,其通信协议研究面临许多新的挑战.文中对各种具有代表性的协议算法性能进行了深入的比较性研究,分析指明了WSN协议设计的挑战性.  相似文献   

8.
Recent literature characterizes future wireless sensor networks (WSN) with dynamic spectrum capabilities. When cognitive radio is introduced as a main component of a network, a network management protocol is needed to ensure network connectivity and stability especially in highly dynamic environments. Implementing such protocols in WSN opens more challenges because of the resource constraints in sensor networks. We propose a distributed lightweight solution that fulfills this need for WSN. With this protocol, a node in a multichannel environment is quickly able to establish a control channel with neighboring nodes. Lightweight distributed geographical either increases or reduces the coverage area of the control channel based on perceived interference and adequately takes care of intersecting nodes with minimal overhead. By identifying local minima nodes, it also has the potentiality of reducing route failure by 70% further reducing the time and energy overhead incurred by switching to angle routing or maximum power transmission schemes usually used to solve the local minima issue. The work shows best operating values in terms of duty cycle and signal to noise ratio threshold frequencies and the lightweight nature of lightweight distributed geographical in terms of energy and communication overhead, which suits network management protocols for cognitive radio sensor networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Power management is an important issue in wireless sensor networks (WSNs) because wireless sensor nodes are usually battery powered, and an efficient use of the available battery power becomes an important concern specially for those applications where the system is expected to operate for long durations. This necessity for energy efficient operation of a WSN has prompted the development of new protocols in all layers of the communication stack. Provided that, the radio transceiver is the most power consuming component of a typical sensor node, large gains can be achieved at the link layer where the medium access control (MAC) protocol controls the usage of the radio transceiver unit. MAC protocols for sensor networks differ greatly from typical wireless networks access protocols in many issues. MAC protocols for sensor networks must have built‐in power conservation, mobility management, and failure recovery strategies. Furthermore, sensor MAC protocols should make performance trade‐off between latency and throughput for a reduction in energy consumption to maximize the lifetime of the network. This is in general achieved through duty cycling the radio transceiver. Many MAC protocols with different objectives were proposed for wireless sensor networks in the literature. Most of these protocols take into account the energy efficiency as a main objective. There is much more innovative work should be done at the MAC layer to address the hard unsolved problems. In this paper, we first outline and discuss the specific requirements and design trade‐offs of a typical wireless sensor MAC protocol by describing the properties of WSN that affect the design of MAC layer protocols. Then, a typical collection of wireless sensor MAC protocols presented in the literature are surveyed, classified, and described emphasizing their advantages and disadvantages whenever possible. Finally, we present research directions and identify open issues for future medium access research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Power management is an important issue in wireless sensor networks (WSNs) because wireless sensor nodes are usually battery powered, and an efficient use of the available battery power becomes an important concern specially for those applications where the system is expected to operate for long durations. This necessity for energy efficient operation of a WSN has prompted the development of new protocols in all layers of the communication stack. If the radio transceiver is the most power consuming component of a typical sensor node, large gains can be achieved at the link layer where the medium access control (MAC) protocol controls the usage of the radio transceiver unit.  相似文献   

11.

The wireless sensor network (WSN) is always known for its limited-energy issues and finding a good solution for energy minimization in WSNs is still a concern for researchers. Implementing mobility to the sink node is used widely for energy conservation or minimization in WSNs which reduces the distance between sink and communicating nodes. In this paper, with the intention to conserve energy from the sensor nodes, we designed a clustering based routing protocol implementing a mobile sink called ‘two dimensional motion of sink node (TDMS)’. In TDMS, each normal sensor node collects data and send it to their respective leader node called cluster head (CH). The sink moves in the two dimensional direction to collect final data from all CH nodes, particularly it moves in the direction to that CH which has the minimum remaining energy. The proposed protocol is validated through rigorous simulation using MATLAB and comparisons have been made with WSN’s existing static sink and mobile sink routing protocols over two different geographical square dimensions of the network. Here, we found that TDMS model gives the optimal result on energy dissipation per round and increased network lifetime.

  相似文献   

12.
针对无线传感器网络能量受限和路由协议中节点能量消耗不均衡的问题,提出一种新的无线传感器网络的分区异构分簇协议(PHC协议).该协议的核心是将3种不同能量等级的节点根据能量的不同分别部署在不同区域,能量较高的高级节点和中间节点使用聚类技术通过簇头直接传输数据到汇聚点,能量较低的普通节点则直接传输数据到汇聚点.仿真结果表明,该协议通过对节点合理的分配部署,使簇头分布均匀,更好地均衡了节点的能量消耗,延长了网络的稳定期,提高了网络的吞吐量,增强了网络的整体性能.  相似文献   

13.
Wireless multimedia sensor networks: A survey   总被引:3,自引:0,他引:3  
In recent years, the growing interest in the wireless sensor network (WSN) has resulted in thousands of peer-reviewed publications. Most of this research is concerned with scalar sensor networks that measure physical phenomena, such as temperature, pressure, humidity, or location of objects that can be conveyed through low-bandwidth and delay-tolerant data streams. Recently, the focus is shifting toward research aimed at revisiting the sensor network paradigm to enable delivery of multimedia content, such as audio and video streams and still images, as well as scalar data. This effort will result in distributed, networked systems, referred to in this paper as wireless multimedia sensor networks (WMSNs). This article discusses the state of the art and the major research challenges in architectures, algorithms, and protocols for wireless multimedia sensor networks. Existing solutions at the physical, link, network, transport, and application layers of the communication protocol stack are investigated. Finally, fundamental open research issues are discussed, and future research trends in this area are outlined.  相似文献   

14.
无线传感器网络中采用协同通信技术进行收集、交换和分析数据,可以有效提高信息精确度,并大大减少节点的能耗。其中协作节点的选择是一个重要问题。考虑在WMSN中应用信息压缩反馈技术,将分布在临近地理位置上的传感器节点的视频流质量指标(Video Stream Quality Index, VSQI)通过控制信道反馈给汇聚节点,可以为协同节点的选择提供支持。本文根据人类视觉特征,提出了一种用于视频流质量估计的方法,并据此综合考虑VSQI信号的设计。由于WMSN中巨大的信息反馈量,将压缩感知(Compressive Sensing, CS)理论应用到VSQI压缩反馈中进行了研究,寻找并验证了与VSQI信号相关的随机测量矩阵与重建准则,实验结果证明基于压缩感知的压缩反馈方法可以降低感知节点端处理复杂度、增强反馈压缩程度,从而确定WMSN中传输节点的协作节点。   相似文献   

15.
王龙军 《电子工程师》2009,35(5):32-34,38
WSN(无线传感器网络)是由大量分布式的不同规格和功能的具有感知、计算和通信能力的微型传感器节点通过自组织的方式构成的一个小范围的无线网络。为了解决无线传感器的远距离通信中继问题,能够将网络信息通过中继顺利地传送到远程终端,设计了基于移动螃蟹的传感器网络。它以机器螃蟹作为中继,进行数据的本地化处理和融合,实现分布式数据采集和监控。本系统应用于大规模的无线网络,增加了设备状态数据采集与通信的距离,有效地增强了系统的健壮性。  相似文献   

16.
We derive a new investigation for the wireless sensor networks (WSNs) when the underlying sensor node distribution strategies have strong influence on event specific communication performance. In this paper, we inclusively evaluated eight sensor network distributions namely: normal, gamma, exponential, beta, generalized inverse Gaussian, poison, Cauchy and Weibull. We designed and illustrated our proposed model with these node distributions for data dissemination. Moreover, performance evaluation matrices like sense count, receive count and receive redundant count are also evaluated. Additionally, we emphasized over the routing protocol behavior for different distribution strategies in the deployed WSN framework. Finally, simulation analysis has been carried out to prove the validity of our proposal. However, routing protocol for WSNs seems intractable to the sensor node distribution strategies when varied from one to another in the scenario.  相似文献   

17.
Cognitive radio sensor networks   总被引:3,自引:0,他引:3  
Akan  O.B. Karli  O.B. Ergul  O. 《IEEE network》2009,23(4):34-40
Dynamic spectrum access stands as a promising and spectrum-efficient communication approach for resource-constrained multihop wireless sensor networks due to their event-driven communication nature, which generally yields bursty traffic depending on the event characteristics. In addition, opportunistic spectrum access may also help realize the deployment of multiple overlaid sensor networks, and eliminate collision and excessive contention delay incurred by dense node deployment. Incorporating cognitive radio capability in sensor networks yields a new sensor networking paradigm (i.e., cognitive radio sensor networks). In this article the main design principles, potential advantages, application areas, and network architectures of CRSNs are introduced. The existing communication protocols and algorithms devised for cognitive radio networks and WSNs are discussed along with the open research avenues for the realization of CRSNs.  相似文献   

18.
Sensors and actuators are being increasingly deployed for monitoring and controlling different phenomena and processes in a stand-alone manner or attached to sensor nodes with communication capabilities as part of larger wireless sensor networks (WSN). In addition to the protocols for communication within the WSN, sensor nodes may also provide the gateway functionality towards other networks and/or support communication with other external devices. These devices either represent additional gateways for exposing data and metadata to external networks, or serve as connection points to WSN for instance for the on-site calibration and maintenance. Smartphones as advanced mobile terminals appear particularly suitable for such role. This paper investigates the role a smartphone augmented with WSN gateway functionality can play in WSN with respect to regular dedicated sensor and gateway nodes. As a practical example we show the implementation of a gateway augmented smartphone using a Samsung i8910 phone and a VESNA sensor node connected via Bluetooth. The role of a gateway augmented smartphone is to interface between WSN, which is using a proprietary networking protocol, and the mobile network. The data obtained from WSN can be enriched using smartphone’s embedded sensors before being sent to the remote server. We demonstrate this on an example of geo-tagging the collected data from WSN with the smartphone’s Global Positioning System-based location data.  相似文献   

19.
一种基于WSN时变性与节点剩余能量均衡的机会路由算法   总被引:1,自引:0,他引:1  
 为了解决数据报文在无线传感网络中动态路由以及网络内各节点剩余能量均衡问题,该文提出了一种机会路由算法。首先,利用热力学第2定律描述数据报文在无线传感器网络中动态路由的传输过程,其中,为了表征网络内各节点状态的时变性以及剩余能量,提出了机会熵模型;其次,以机会熵模型作为选择下一跳节点的理论依据,并结合蚁群优化(ACO)算法,设计并实现了考虑网络中各节点时变性与剩余能量均衡的机会路由算法(ACO for Time Dependent Opportunistic-routing Protocol, ATDOP),使得数据报文在转发过程时,能够有效地选择下一跳节点,从而使网络内各节点的通信资源和能量资源达到负载均衡。最后,通过实验证明,相对于已有的机会路由协议,ATDOP具有报文成功传输率高、网络有效吞吐量大以及网络工作寿命长等优点。  相似文献   

20.
Event-to-sink reliable transport in wireless sensor networks   总被引:4,自引:0,他引:4  
Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of several microsensor nodes. Reliable event detection at the sink is based on collective information provided by source nodes and not on any individual report. However, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Hence, the WSN paradigm necessitates a collective event-to-sink reliability notion rather than the traditional end-to-end notion. To the best of our knowledge, reliable transport in WSN has not been studied from this perspective before. In order to address this need, a new reliable transport scheme for WSN, the event-to-sink reliable transport (ESRT) protocol, is presented in this paper. ESRT is a novel transport solution developed to achieve reliable event detection in WSN with minimum energy expenditure. It includes a congestion control component that serves the dual purpose of achieving reliability and conserving energy. Importantly, the algorithms of ESRT mainly run on the sink, with minimal functionality required at resource constrained sensor nodes. ESRT protocol operation is determined by the current network state based on the reliability achieved and congestion condition in the network. This self-configuring nature of ESRT makes it robust to random, dynamic topology in WSN. Furthermore, ESRT can also accommodate multiple concurrent event occurrences in a wireless sensor field. Analytical performance evaluation and simulation results show that ESRT converges to the desired reliability with minimum energy expenditure, starting from any initial network state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号