共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
WANGYu-tian LIUZhan-wei HOUPei-guo SHANWei 《半导体光子学与技术》2004,10(3):199-202
The distributed optical fiber sensing technology is overviewed, which is based on Raman scattering light theory. Basic operation principle, structure, system characteristics and signal processing are discussed. This structure and method of the signal processing possess of certain spatial resolution, hence will ensure the practicability of system. 相似文献
10.
11.
12.
13.
Special Issue on “Cognitive Radio Technologies” 总被引:1,自引:0,他引:1
Ramjee Prasad 《Wireless Personal Communications》2008,45(3):277-279
14.
15.
16.
17.
18.
19.
Recent progress in long-distance in-Fiber Bragg Grating (FBG) sensor systems at University of Electronic Science & Technology of China (UESTC) is reviewed in this paper. Two novel approaches with a 50km transmission distance are proposed and demonstrated. The first one is based on the combination of bidirectional Raman amplification and a dual Erbium-Doped Fiber (EDF) configuration. A good Signal-to-Noise Ratio (SNR) of ~16dB is achieved with only a pump power of ~280 mW, which is ~10 dB higher than that without amplification. The second is based on a novel tunable fiber ring laser configuration with hybrid Raman/EDFA configuration. Experimental results show that an excellent optical SNR of-~60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of ~170 mW and a low EDFA pump power of~40 mW at wavelength of 980 nm. It is anticipated that these long-distance FBG sensing systems could find important applications in health monitoring of large infra-structures, such as oil or gas pipelines, ultra-long bridges and tunnels, river banks, and so on. 相似文献
20.
In this paper, we utilize clustering to achieve energy efficiency for the on–off wireless sensor network, whose member nodes alternate between active and inactive states. In the proposed Distributed and Energy Efficient Self Organization (DEESO) scheme, the head election is adjusted adaptively to the remaining battery levels of local active nodes, which is a completely distributed approach compared to LEACH that relying on other routing schemes to access global information. Furthermore, we apply the Adaptive Channel Assignment (ACA) to address the on-off topology changes. Simulation results show that DEESO delivers 184% amount of data to the base station as LEACH for the same amount of energy consumption and the effective network lifetime is extended by around 50%. 相似文献