首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
研究了无溶剂体系中酶法催化微藻油脂乙酯化制备生物柴油的技术工艺,采用Box-Behnken设计及响应面优化了工艺参数。经SAS 9.2软件分析得到的最优条件为:Novozym 435脂肪酶用量6.0%(w/w),醇油摩尔比4.0∶1,温度44.7℃,反应时间17.6 h。在该条件下,乙酯得率达94.86%。同时,获得的较高乙酯转化率为微藻油脂中多不饱和脂肪酸提取奠定了技术基础。  相似文献   

2.
两步法催化高酸价微藻油脂制备生物柴油   总被引:1,自引:1,他引:1  
研究了两步法催化高酸价微藻油脂制备生物柴油的工艺条件。测定从产油栅藻培养物中提取的油脂的化学成分,发现油脂的游离脂肪酸含量分布在10%~32%,极性脂含量分布在21%~46%。以此高酸价、高极性脂含量油脂,经过酸预酯化-碱催化转酯化两步法制备生物柴油。其最优反应条件为:30%的醇加入量,1%油质量的硫酸催化反应2 h,其油脂酸价可从初始酸值的17~46 mg/g降低至2 mg/g以下;随后,在醇油物质的量之比为12:1,催化剂氢氧化钾用量为油质量的2%,65℃条件下反应30min,制备所得生物柴油中脂肪酸甲酯的质量分数可达96.6%,甘油三酯的转化效率接近100%。根据《柴油机燃料调合用生物柴油》国家标准,测定了微藻生物柴油产品的品质指标,发现其密度、运动黏度、酸价、氧化安定性等各项指标均符合国家标准(GB/T 20828-2007);热值为39.76 MJ/kg,符合欧盟生物柴油标准(EN 14214)。  相似文献   

3.
无溶剂体系中酶催化合成共轭亚油酸甘油酯   总被引:1,自引:0,他引:1  
采用直接酯化法,以共轭亚油酸(简称CLA)和甘油为原料,用脂肪酶Novozym 435催化合成共轭亚油酸甘油酯。结果表明:n(甘油)/n(CLA)=5,酶添加量为体系总质量的4%,65℃反应6 h后,共轭亚油酸的转化率为98.18%。所得共轭亚油酸甘油酯为淡黄色油状透明液体,酸价低于3,Novozym 435的操作半衰期为30 h。  相似文献   

4.
制备生物柴油用小球藻的油脂富集培养研究   总被引:5,自引:0,他引:5  
研究了培养温度、光照强度、氮源及其氮含量对小球藻Chlorella spp的生长、油脂含量及脂肪酸的影响,以期获得最为适宜的富含油脂微藻的培养条件.采用比生长速率评价微藻的生长状况,以溶剂浸提法提取微藻中的油脂,并采用气质联用和气相色谱分析微藻的脂肪酸纰成.研究结果表明.既能使微藻Chlorella spp良好生长又可提高其油脂含量的培养条件为:温度25℃、光照强度3 500 lux、添加氮源硝酸钠并使其含氮质量浓度为0.25 g/L,此时的油脂含量可达43.7%.微藻脂肪酸的组成以C16∶0、C18∶0、C18∶2为主,表明小球藻的主要脂肪酸组成为C16和C18脂肪酸.  相似文献   

5.
响应面法优化脂肪酶催化废油脂合成生物柴油工艺的研究   总被引:6,自引:0,他引:6  
高静  邓利  王芳  谭天伟 《现代化工》2005,25(Z1):224-227
利用响应面法对酶催化废油合成生物柴油复杂的反应条件进行优化研究.采用6因素5水平和中心组分旋转设计法研究了反应温度、酶用量、流加次数、有机溶剂用量、底物摩尔比和水含量诸因素共同作用对反应转化率的影响.优化后的反应条件为反应温度34℃、酶用量30%(相对于油的质量分数)、流加次数4次、有机溶剂用量和水含量皆为0、底物醇油摩尔比为2,在该反应条件下转化率可达94.6%.  相似文献   

6.
无溶剂体系中脂肪酶催化亚麻油水解反应研究   总被引:2,自引:0,他引:2  
研究了,无溶剂体系中脂肪酶催化的亚麻油水解反应。考察了反应温度、脂肪酶用量、水/亚麻油摩尔比等因素对反应速率及转化率的影响。结果表明,脂肪酶最佳使用温度范围、最大活性温度及完全失活温度分别为:33℃~37℃,35℃,45℃;n(水):n(亚麻油)为30:l;脂肪酶用量以占反应物总质量的5%为宜。研究结果为开发α-亚麻酸的酶法生产工艺提供了基础数据。  相似文献   

7.
;考察了无溶剂体系中固定化脂肪酶Novozym 435催化小桐籽油制备生物柴油的工艺条件.结果表明,加入硅胶有利于提高反应速率和转化率,且当硅胶存在时,甲醇可一次性加入,简化了实验的操作步骤.当无外加水分存在时,甲醇与小桐籽油的物质的量之比为3,固定化酶用量为小桐籽油质量的7%,硅胶加入量与小桐籽油质量比0.4,在40...  相似文献   

8.
以商业固定化脂肪酶复配的组合酶(米黑毛霉脂肪酶+南极假丝酵母脂肪酶)为催化剂、栅藻藻油为原料制备生物柴油,对反应体系和条件进行全面优化,得出最理想的酶催化反应体系和条件分别为:藻油与甲醇摩尔比为1∶12、助溶剂(叔丁醇)∶藻油为1∶1(V/m)、藻油与固定化脂肪酶质量比为50∶1、反应温度为45℃、反应时间为9~12 h、摇床转速为250 r/min。在此条件下,制得的生物柴油(FAME)最高转化率达98.67%,为微藻生物柴油的工业化开发和应用提供了参考依据。  相似文献   

9.
废食用油脂固定床酶法合成生物柴油研究   总被引:3,自引:0,他引:3  
利用废食用油脂合成生物柴油,既能够实现废弃物的清洁利用,又能提供可再生的绿色能源。采用固定化假丝酵母脂肪酶为催化剂,在三级固定床反应器内,采用分级流加甲醇的方式,每级醇油摩尔比为1∶1,探讨了酶质量分数、溶剂质量分数、水质量分数、温度、反应液流速等与产物中甲酯质量分数的关系。实验结果表明,当油中酶、溶剂、水的质量分数分别为25%,15%,10%,反应液流速为1.2 mL/min,温度为45℃时,产物中甲酯质量分数达到最大值91.08%,其中油酸甲酯质量分数最高。产品经过精制后,理化性质符合美国和德国生物柴油标准,绝大多数指标优于我国0#柴油。  相似文献   

10.
酶催化餐饮业废油脂生产生物柴油的研究   总被引:3,自引:0,他引:3  
研究了利用餐饮业废油脂和甲醇,在无溶剂系统中通过脂肪酶的转酯作用来生产生物柴油.结果表明,醇油摩尔比为3∶1时甲醇转化率只能达到48%左右,醇油摩尔比低于1∶1时甲醇转化率能达到95%以上,采用分批添加法,甲醇总转化率可以明显提高到80%以上.反应体系的最适初始水活度应控制在0.54~0.75之间,随着反应温度的升高,酯交换反应的速度加快,但酶失活率也随之增大.  相似文献   

11.
为研制食药两用的功能性原料亚油酸乙酯,以玉米油和乙醇为原料,经固定化脂肪酶催化合成脂肪酸乙酯。通过单因素试验和响应面分析法(RSM)研究醇油摩尔比、脂肪酶用量、反应温度、反应时间对玉米油脂肪酸乙酯合成的影响。研究结果表明,玉米油脂肪酸乙酯合成的最佳工艺条件为醇油摩尔比为4∶1,脂肪酶质量分数为30.82%,反应温度为50.39℃,反应时间为24.15 h,在此工艺条件下脂肪酸乙酯转化率为90.20%。  相似文献   

12.
The ethanolysis of sunflower oil (SFO) with Lipozyme (immobilizéd 1,3-specific Mucor miehei lipase) in a medium solely composed of substrates was investigated. The effects of oil/ethanol molar ratio, temperature, added water content, and amount of enzyme were analyzed. The optimal values were, respectively, 1:3, 50°C, 0% (vol/vol), and 0.4 g of Lipozyme per 5.7 mmol of SFO. The use of immobilized lipase made the reuse of enzyme feasible, and the enzyme could be recovered easily from the reaction mixture and recycled to reduce the cost of catalyst. In the last three consecutive runs of enzyme reuse, the final conversion yield of SFO from ethanolysis with added silica gel support was higher than that obtained from ethanolysis under standard conditions. The lipase-catalyzed alcoholytic reaction is potentially useful in the production of alkyl esters of specific interest.  相似文献   

13.
The objective of this study was to investigate the use of lipases as catalysts for separating EPA and DHA in fish oil by kinetic resolution based on their FA selectivity. Esterification of FFA from various types of fish oils with glycerol by immobilized Rhizomucor miehei lipase under water-deficient, solvent-free conditions resulted in a highly efficient separation of EPA and DHA. Reactions were conducted at 40°C with a 10% dosage of the lipase preparation under vacuum to remove the coproduced water, thus rapidly shifting the reaction toward the products. The bulk of the FA, together with EPA, were converted into acylglycerols, whereas DHA remained in the residual FFA. As an example, when FFA from tuna oil comprising 5% EPA and 25% DHA were esterified with glycerol, 90% conversion into acylglycerols was obtained after 48 h. The residual FFA contained 78% DHA and only 3% EPA, in 79% DHA recovery. EPA recovery in the acylglycerol fraction was 91%. The type of fish oil and extent of conversion were highly important parameters in controlling the degree of concentration.  相似文献   

14.
The lipase-catalyzed esterification of sorbitan with oleic acid in a solvent-free system to form sorbitan oleate (commercial name Span80) was studied as a feasible approach aimed at meeting the demand for sugar alcohol-based surfactants. Screened results obtained from enzymatic synthesis of sorbitan oleate indicated that Novozym 435 had its highest catalytic activity in a solvent-free system. The introduction of a reduced-pressure system increased the production of sorbitan oleate to a maximum of 95% of theoretical, obtained from 0.2 mol sorbitan, 0.1 mol oleic acid, and 2.0 g lipase (6 wt% of sorbitan) in a solvent-free reaction mixture at optimal reaction conditions. Results obtained from lipase-catalyzed batch esterification reactions showed that more than 90% conversion of sorbitan oleate was maintained after 10 batches of esterification reactions, indicating excellent enzyme stability. Subsequent analysis by HPLC indicated that the product of enzyme-catalyzed esterification by the immobilized lipase contained a significantly greater amount of monoester (about 80%) compared to the composition obtained by chemical synthesis (about 50%).  相似文献   

15.
γ-Linolenic acid (GLA, all-cis 6,9,12-octadecatrienoic acid) has been enriched from fatty acids of borage (Borago officinalis L.) seed oil to 93% from the initial concentration of 20% by lipase-catalyzed selective esterification of the fatty acids withn-butanol in the presence ofn-hexane as solvent. The immobilized fungal lipase preparation, Lipozyme, used as biocatalyst, preferentially esterified palmitic, stearic, oleic and linoleic acids and discriminated against GLA, which was thus concentrated in the unesterified fatty acids fraction. In the absence of hexane, concentrate containing about 70% GLA was obtained. When the reaction conditions, optimized for borage oil fatty acids, were applied to fatty acids of evening primrose (Oenothera biennis L.) oil, concentrates containing 75% GLA were obtained. From both oils, GLA concentrates were prepared efficiently in short reaction times (1–3 h) at 30–60°C. The process can be applied for the production of GLA concentrates for dietetic purposes.  相似文献   

16.
Monoglycerides of erucic acid (C22:1, Δ13), prepared by conventional methods, were reacted with caprylic acid (octanoic acid, C8.0) by using lipases as catalysts with the intention of synthesizing a triglyceride that contains two molecules of caprylic acid and one molecule of erucic acid (caprucin). The reaction was carried out by mixing lipase powder, a small quantity of water, and the reactants in a temperature-controlled stirred batch reactor. Organic solvents or emulsifying agents were not required. When the nonspecific lipase fromPseudomonas cepacia was used, a yield of approximately 37% caprucin was obtained, together with a complex mixture of di- and triglycerides that resulted from the random transesterification of the erucic acid. The fatty acid-specific lipase fromGeotrichum candidum promoted minimal transesterification of erucic acid and resulted in a yield of 75% caprucin and approximately 10% interesterification products. Lipase fromCandida rugosa exhibited a similar, although less pronounced, specificity to that fromG. candidum and promoted more transesterification of erucic acid. Optimum conditions forG. candidum lipase were at 50°C and an initial water content of 5.5%. After the reaction, erucic acid was converted to behenic acid by hydrogenation, thereby converting caprucin into caprenin, a commercially available low-calorie triglyceride.  相似文献   

17.
1,3-Diacylglycerols were synthesized by direct esterification of glycerol with free fatty acids in a solvent-free system. Free fatty acids with relatively low melting points (<45°C) such as unsaturated and medium-chain saturated fatty acids were used. With stoichiometric ratios of the reactants and water removal by evaporation at 3 mm Hg vacuum applied at 1 h and thereafter, the maximal 1,3-diacylglycerol content in the reaction mixture was: 84.6% for 1,3-dicaprylin, 84.4% for 1,3-dicaprin, 74.3% for 1,3-dilinolein, 71.7% for 1,3-dieicosapentaenoin, 67.4% for 1,3-dilaurin, and 61.1% for 1,3-diolein. Some of the system’s parameters (temperature, water removal, and molar ratio of the reactants) were optimized for the production of 1,3-dicaprylin, and the maximal yield reached 98%. The product was used for the chemical synthesis of 1,3-dicapryloyl-2-eicosapentaenoylglycerol. The yield after purification was 42%, and the purity of the triacylglycerol was 98% (both 1,3-dicapryloyl-2-eicosapentaenoylglycerol and 1,2-dicapryloyl-3-eicosapentaenoylglycerol included) by gas chromatographic analysis, of which 90% was the desired structured triacylglycerol (1,3-dicapryloyl-2-eicosapentaenoylglycerol) as determined by silver ion high-performance liquid chromatographic analysis.  相似文献   

18.
This paper reports on the synthesis of triglycerides by enzymatic esterification of polyunsaturated fatty acids (PUFA) with glycerol. A PUFA concentrate obtained from cod liver oil was used to optimize the reaction to favor triglyceride synthesis with lipases. The type and amount of lipase and organic solvent, glycerol content, temperature, water content, and amount and time of addition of molecular sieves were studied. The optimal reaction mixture and conditions were: 9 mL hexane, 60°C, 0.5% (vol/vol) water, 1 g molecular sieves added after 24 h of reaction, glycerol/fatty acid molar ratio 1:3 and 100 mg of Novozym 435 (Novo Nordisk A/S) lipase. Under these conditions, an enriched triglyceride yiedl of 84.7% containing 27.4% eicosapentaenoic acid and 45.1% docosahexaenoic acid was obtained from a cod liver oil PUFA concentrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号