首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
《应用化工》2019,(11):2698-2702
介绍了A_2BO_4型类钙钛矿的结构和第一性原理方法,并从布居数、能带、态密度等方面,详细概括、分析了A_2BO_4型类钙钛矿材料电子结构、介电性质、光学性质和离子迁移率等性质的第一性原理方法计算的研究进展。  相似文献   

2.
类钙钛矿IT-SOFC阴极材料研究进展   总被引:1,自引:2,他引:1  
类钙钛矿结构的复合氧化物材料是近年来开发的一类具有广阔发展前景的中温固体氧化物燃料电池阴极材料.本文综述了A_2BO_4型和AA' B_2O_5型类钙钛矿结构阴极材料的研究进展,并总结了这两类材料作为IT-SOFC阴极的性能特点,提出今后的研究工作将着重于改善材料的微观结构,以提高类钙钛矿阴极材料的电化学性能和热稳定性.  相似文献   

3.
通过应力调控方式,采用了GGA和LDA两种近似方法分别计算了立方相Ca2Ge在-2 ~4 GPa应力下的电子结构和光电特性.根据能带结构计算结果得到,在-2~4 GPa应力范围,立方相Ca2Ge均为在G高对称点的直接带隙半导体,在0 GPa下GGA和LDA计算的带隙值分别为0.55 eV和0.426 eV.态密度结果表明了在所有调控应力下,价带主要是由Ge的p态电子贡献,导带主要是由Ca的d态电子贡献.分析复介电函数得到,0 GPa下的静态介电常数ε1(0)取得最大值,在所有应力范围内,介电函数ε1在E=0.7 eV附近获得最大峰值,但2 GPa和4 GPa下的介电函数最大值向低能区移动,介电函数虚部ε2峰值主要是由Ge的4p态电子向Ca的3d态跃迁所产生的.根据折射率、反射谱、吸收谱信息,-2 GPa、2 GPa和4 GPa的调控应力使立方相Ca2 Ge在5.2 ~6.5 eV能量范围内呈现出了较强的金属反射特性,此时,折射率和吸收谱值为0,反射谱取得最大值1,而能量损失函数分析表明,在调控应力下,出现最大能量损失的横坐标值从10.2 eV移动至7.8 eV,表明了可通过施加应力方式调控光电子能量出现的最大损失.  相似文献   

4.
本文利用了基于密度泛函理论的第一性原理和平面波赝势方法计算了CdMoO4晶体的电子结构和光学性质.分别采用了广义梯度近似(GGA)和局域密度近似(LDA)对晶胞参数进行优化,得到了最稳定状态下的晶胞参数.在优化结构的基础上得到了两种近似下的能带结构,电子态密度和介电函数.能带结构表明CdMoO4的价带顶和导带底均在Γ点,直接带隙分别为2.342 eV (GGA),2.241 eV (LDA).电子态密度计算结果说明Mo4d和O2p轨道之间强烈杂化形成Mo-O共价键,且其键性强于Cd-O键.计算得到的介电函数实部与虚部和Abraham等用WIEN97软件计算的结果吻合得较好.  相似文献   

5.
6.
钙钛矿和类钙钛矿型微波介质陶瓷因其独特的化学结构而具有非常优异的介电性能,已广泛应用于卫星通信、雷达、民用移动通信等领域,在微波通讯技术中扮演着重要的角色,是目前功能陶瓷领域的研究热点之一.综述了近年来钙钛矿和类钙钛矿型微波介质陶瓷的研究进展,介绍了钙钛矿型陶瓷的晶体结构、微波介电性能.总结了不同位离子置换、复合改性以...  相似文献   

7.
沈丁  李犇  杨绍斌  唐树伟 《化工进展》2013,32(4):837-841
综述了第一性原理在锂离子电池聚阴离子型磷酸盐、硅酸盐和硼酸盐正极材料计算模拟与设计方面的研究进展,详细论述了第一性原理在LiFePO4平均嵌Li电压的理论计算与预测、电子结构与电子传导特性和Li+扩散途径等物理化学性质方面取得的研究成果以及掺杂对LiFePO4物理化学性质的影响。这些研究成果从理论计算方面揭示了锂离子电池涉及的复杂微观机理,为进一步改进锂离子电池的电化学性能提供了理论依据。  相似文献   

8.
采用第一性原理方法,研究了高压下Ti2AlC的结构、弹性和电子性质.结果表明,Ti2AlC的晶格常数a、c和体积V均随着外压的增大减小,且c比a减小幅度略大,表明Ti2AlC在c轴方向比a轴方向更容易被压缩,体现了该材料的各向异性.计算了Ti2AlC的弹性常数、体模量、剪切模量、杨氏模量、泊松比等弹性性质,发现这些弹性性质均随着外压的增加而增大,并根据弹性常数证明了Ti2AlC在0~50 GPa范围内均是力学稳定的.此外,还从电子态密度的角度考察了Ti2AlC的电子性质,认为其具有共价键和金属键的双重性质,并发现在0~50 GPa范围内压力对Ti2AlC的态密度性质影响较小.  相似文献   

9.
钙钛矿和类钙钛矿型微波介质陶瓷因其独特的化学结构而具有非常优异的介电性能,已广泛应用于卫星通信、雷达、民用移动通信等领域,在微波通讯技术中扮演着重要的角色,是目前功能陶瓷领域的研究热点之一.综述了近年来钙钛矿和类钙钛矿型微波介质陶瓷的研究进展,介绍了钙钛矿型陶瓷的晶体结构、微波介电性能.总结了不同位离子置换、复合改性以及低温烧结等对钙钛矿和类钙钛矿型陶瓷微波介电性能的影响,提出了目前该类微波介质陶瓷研究所存在的主要问题,并对其发展方向进行了展望.  相似文献   

10.
牛春艳  徐占林 《应用化工》2008,37(4):419-421
采用共沉淀法、硝酸盐分解法、溶胶-凝胶法3种不同的方法制备了纳米级的类钙钛矿型复合氧化物La2NiO4;采用XRD、SEM、BET等实验技术对催化剂进行了表征,并且考察了该催化剂对CH4/CO2重整反应的催化活性。实验结果发现,不同方法制备的催化剂在粒子大小、比表面积、催化活性等方面存在差异,其中溶胶-凝胶法制备的催化剂表现较好。  相似文献   

11.
磷酸铁锂(LiFePO4)具有高温稳定性较好、循环性能良好、环保等特点,已成为锂离子动力电池正极材料之一。但由于磷酸铁锂电导率低及锂离子扩散速率慢等缺点,制约其在动力电池行业的发展。因此主要从包覆碳材料对磷酸铁锂进行表面改性、对磷酸铁锂进行掺杂、制备亚微米或纳米级的磷酸铁锂或制备特殊形貌的磷酸铁锂3方面进行综述,分析改善磷酸铁锂性能最优的方法,对其未来的发展趋势进行了预测。  相似文献   

12.
张寰  刘峙嵘 《现代化工》2013,33(5):17-20,22
简要阐述全球和我国的化石能源及CO2排放现状,针对燃烧后捕集化石燃料电厂烟道气中的CO2气体,以溶液吸收、吸附、膜分离、生物固定4种捕集方法为线索,讨论了各类CO2燃烧后捕集材料的最新进展。  相似文献   

13.
二氧化碳过度排放所导致的全球变暖已成为环境危机的重要问题,所以中国提出的实现碳达峰和碳中和的战略目标势在必行.为了解决这个问题,科研工作者们采用多种多样的二氧化碳捕集和储存技术.该文重点介绍了碳类材料、沸石、金属有机骨架材料、水滑石类材料、金属氧化物及其盐以及负载胺基材料等主要的CO2吸附材料的最新研究进展,详细介绍了各种吸附剂的吸附机理、性能的优缺点、改进的方向以及面临的挑战,并对吸附材料未来发展方向进行了展望.  相似文献   

14.
《应用化工》2022,(12):3482-3488
综述了近年来MOFs材料对纯CO_2吸附及从二元混合气中对CO_2进行吸附分离领域的研究进展,讨论了吸附温度,比表面积对材料CO_2吸附量的影响,阐明了材料吸附及分离CO_2的机理,指出了负载官能团、掺杂金属离子、制备复合材料是提高材料CO_2吸附性能的有效手段。目前,将金属-有机骨架材料作为CO_2吸附剂仍面临成本过高,吸附性能有待进一步加强等问题,只有解决了这些问题,材料才能实现工业化应用。  相似文献   

15.
梁倩  赵震 《工业催化》2010,18(7):1-7
随着温室效应日益严重,研发高效捕获CO_2的新型材料对于缓解环境压力具有重要意义。金属有机骨架材料具有高比表面积、结构多样性和孔道可调控性等优点,尤其在储存CO_2方面展现出惊人潜质。简要介绍金属有机骨架材料及其延伸化合物——沸石咪唑酯骨架材料和共价有机骨架材料作为新型储存CO_2材料,在结构、储存CO_2性能和机理等方面的研究进展,并阐述了该类材料在研究过程中存在的不足与发展前景。  相似文献   

16.
主要介绍了有机-无机杂化材料的特点、溶胶-凝胶法的原理,并对溶胶-凝胶法制备二氧化硅(SiO_2)/水性聚氨酯(WPU)杂化材料的不同作用类型进行了综述。最后对SiO_2/WPU杂化材料存在的问题提出了解决措施及相关的建议,并对该杂化材料的发展方向进行了展望。  相似文献   

17.
金属空气电池在可穿戴电子产品和能源储存领域中具有巨大的应用潜力,然而稳定性差和能量效率低的问题限制其性能的进一步提高。电化学氧还原反应(ORR)和氧析出反应(OER)对于金属空气电池的性能起着至关重要的作用。发展催化活性高、稳定性好的空气电极催化剂是未来的研究趋势。碳材料因具有导电性优异、结构多样等优势已被广泛用作金属空气电池的导电骨架支撑材料和电催化材料,成为研究的热点。对非金属原子掺杂碳材料、过渡金属及其衍生物掺杂碳材料以及单原子催化剂作为单功能或双功能催化剂的研究进行综述,着重介绍了其在金属空气电池中的应用,对空气电极催化剂存在的问题进行总结,并对未来的发展方向进行展望。  相似文献   

18.
负载型光催化剂是将光催化剂负载固定于载体上而得到的一种复合型光催化材料。在参考近年来国内外光催化领域研究的基础上,对负载型光催化剂的载体的作用、选择的一般原则、常用载体的类型等进行了概述。从负载型光催化剂的负载固定的形式入手,重点综述了近年来光催化剂的负载固定化方法的研究进展,同时提出了目前负载型光催化剂研究的热点和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号