首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
KR脱硫渣中主要成分(CaO)为转炉冶炼的优质造渣原料,通过氧化性气氛将渣中硫脱除后可将其用于转炉冶炼.但由于炉渣冷却制度不同,渣中硫的析出行为和赋存状态会发生变化,对炉渣氧化脱硫效果产生影响.基于此,以合成渣的形式探究冷速对KR脱硫渣中硫析出行为的影响,旨在明确KR脱硫渣中硫赋存状态及析出行为与冷却速率的关系,为后续...  相似文献   

2.
朱仁林  李建立  沈家豪  余岳  朱航宇 《钢铁》2021,56(11):72-77
 KR脱硫渣是KR铁水预处理脱硫工艺的副产品,其磁选后尾渣中CaO质量分数大于50%。可将其用作优质造渣原料返回到转炉炼钢工艺中,降低转炉炼钢的原料消耗。但KR脱硫渣中的硫(w((S))=1.0%~2.5%)成为转炉冶炼循环利用的障碍,直接将其用于转炉冶炼会使钢中的硫含量增加。因此,根据工业KR脱硫渣的化学成分,以合成渣的形式对KR脱硫渣中矿物组成及含硫相的析出行为进行研究,旨在明确KR脱硫渣中各矿物相组成及炉渣中硫的析出行为和赋存状态,为后续通过氧化性气氛有效脱除KR脱硫渣中的硫提供理论参考。采用热力学数据库FactSage 8.0的Equilib模块对CaO-SiO2-CaS-CaF2基熔渣的凝固过程进行模拟,利用XRD、SEM-EDS对合成渣样品的矿物组成及微观形貌进行分析、检测。热力学计算结果表明,CaS的析晶温度为1 320 ℃,低于MeO#1相、MeO#2相及2CaO·SiO2相的析晶温度。炉渣样品的面扫描分析结果表明,在实际凝固过程中,受残余液相黏度增大的影响炉渣中少量硫未能析出形成CaS晶体,则以非晶态的形式赋存在基质相中。KR脱硫渣主要由C3S相、MeO#1相(CaO固溶体)、MeO#2相(MgO固溶体)、基质相和CaS相等矿物组成。炉渣中的硫主要以游离态CaS晶体形式赋存,少量以非晶态硫的形式赋存。炉渣中CaS晶粒主要沿着先析出的高熔点硅酸盐(C3S)相边界析出。  相似文献   

3.
KR脱硫的渣资源化利用有利于促进钢铁企业的绿色化发展.KR脱硫渣中主要成分为CaO,且含有质量分数为1.0%~2.5%的硫,直接将K R脱硫渣回用于冶炼工艺会导致钢液增硫.若能将渣中的硫脱出,可有效促进KR脱硫渣在钢铁冶炼工艺的资源化利用.因此,针对当前KR脱硫渣综合利用存在的问题,总结分析有关CaS氧化过程的热力学和...  相似文献   

4.
KR脱硫渣中主要成分(CaO)为转炉冶炼的优质造渣原料,但KR脱硫渣中含有质量分数为1.0%~2.5%的硫,直接将其代替活性石灰用作转炉造渣料回用于冶炼工艺会导致钢液增硫。因此,为了实现KR脱硫渣的氧化脱硫,分析渣中硫氧化行为随炉渣中硫含量变化的机理,通过实验室制取KR脱硫渣样品,采用SEM和XRD分析了氧化后炉渣的微观结构、矿物成分,采用红外碳硫分析仪测定了氧化渣样的硫含量。研究表明,在1 693 K,随硫含量增加炉渣脱硫率先增加后减小,炉渣脱硫率均达到80%以上;随硫含量增加氧化渣样中析出的硅酸盐固相质点数逐渐增加。  相似文献   

5.
中国铁矿磷含量偏高,提高脱磷效率、降低渣料的消耗量对钢铁企业至关重要.1 400℃下,将2CaO·SiO2颗粒插入到含P2 O5为14%(质量分数)的渣中,并保温20、30、60和100 s,研究磷在2CaO· SiO2颗粒中的扩散速率.用SEM-EDS对磷在渣和2CaO·SiO颗粒中的分布进行了测量,并用菲克第二定律计算了磷在2CaO·SiO颗粒中的扩散系数.结果显示:磷在2CaO·SiO中的扩散可视为一维半无限扩散.1 400℃时,磷在2CaO· SiO2颗粒中的扩散系数为6.417×10-12 m2/s,如果脱磷时间为15~20 min,则2CaO· SiO2颗粒不宜大于653 μm.  相似文献   

6.
为了提高转炉渣中CaO的利用率,降低转炉渣的碱度,通过试验研究了CaO粒度、粒状CaO的加入比例、温度和保温时间对含磷富集相的影响。结果表明,适当增大CaO的粒度有利于2CaO·SiO2-3CaO·P2O5固溶体的形成;当渣中粒状CaO的含量较低时,增加粒状CaO的加入比例,可促进渣中大颗粒固溶体的形成并减少渣中磷的含量,但当粒状CaO的含量较高时,2CaO·SiO2-3CaO·P2O5固溶体生成量减少;适当提高温度有利于脱磷反应的进行;随反应时间的延长,2CaO·SiO2-3CaO·P2O5固溶体的粒径增大,而且固溶体中磷的含量也不断增加。  相似文献   

7.
底吹氮工艺在KR法铁水脱硫工序的应用   总被引:1,自引:1,他引:0  
介绍了在选择CaO为脱硫剂的情况下,KR法脱硫技术增加铁水罐(包)底吹N工艺,对提高搅拌头寿命,改善扒渣效果、降低扒渣铁损,提高转炉冶炼低硫钢(w(S)≤0.008%)的终点硫控制合格率等方面取得的成效。  相似文献   

8.
以转炉除尘灰、高炉瓦斯灰和硫酸渣为含铁原料,制成CaO/SiO2值为2.0、C/O摩尔比为1.1~1.2的高碱度内配煤含铁团块,在1330~1380℃下进行自还原,研究这一过程的脱硫和脱磷规律.结果表明:(1)高碱度内配煤含铁团块自还原过程中,通过还原气化脱硫可去除20%~40%的硫,其余的硫绝大部分存在于渣中,并通过渣铁分离被去除,总脱硫率高于97%.(2)过量的CaO可以抑制脉石中的P2O5被碳还原,已被还原的磷一部分被新生态的金属铁吸收,另一部分从团块内部逸出而去除.脉石中未被还原的P2O5最终可通过渣铁分离被去除,总脱磷率达到50%~60%.(3)高碱度内配煤含铁团块高温自还原法可制备出低硫、低磷的"纯净"金属铁粒.  相似文献   

9.
研究了复吹转炉铁水脱磷预处理,半钢倒渣后在同一转炉内进行少渣精炼冶炼超低磷钢的工艺。结果表明:在铁水磷含量0.13%条件下,半钢和终点渣碱度(CaO/SiO2)控制在2.0和3.6左右,TFe含量控制在18%左右,半钢倒渣量40%~60%,半钢脱磷率最高达65%,平均为50%,终点脱磷率最高98%,平均为94.6%,冶炼终点钢水磷含量控制在0.007%以下,最低0.003%,满足低磷钢生产要求。  相似文献   

10.
 为探讨KR脱硫渣的脱硫机理,利用现场取脱硫渣,通过炉渣淬火实验,对渣中矿相组成和硫在渣中分布进行研究与分析。研究结果表明:KR渣主要位于CaO-SiO2-CaF2-CaS四元系,渣中含有单一的CaS相、以CaO为主的CaO-CaF2-CaS相和以CaO、SiO2为主的CaO-SiO2-CaF2-CaS相,且CaS相中的硫含量明显高于其他2种矿相。通过统计渣相中CaS相的面积分数,并结合炉渣总的硫含量,得出渣相中的硫主要以单一的CaS形式存在。因此,通过提高渣相中CaS相的面积分数,可提高炉渣硫含量。  相似文献   

11.
基于富氧顶吹直接炼铅技术,提出硫化铅精矿搭配硫尾矿渣炼铅工艺,以实现硫尾矿渣的综合利用。熔炼过程渣型决定了炉渣的性质,进而影响熔炼过程能否顺利进行。根据熔炼过程渣相组成特点,以PbO-FeO-Fe2O3-SiO2-CaO-ZnO渣系为研究对象,采用FactSage热力学软件计算并绘制该渣系相图。研究温度、w(Fe)/w(SiO2)、w(CaO)/w(SiO2)及ZnO质量分数等因素对炉渣熔化温度及液相生成区的影响。理论研究表明,w(CaO)/w(SiO2)的变化对炉渣熔化温度的影响与w(Fe)/w(SiO2)不同,且w(CaO)/w(SiO2)影响更为显著。炉渣中ZnO质量分数在6%~14%范围内增大时,炉渣的熔化温度变化较小;但当ZnO质量分数进一步增大时,炉渣的液相区逐步减小。在保证熔炼过程顺利进行的前提下,渣中ZnO的质量分数可控制在8%~10%范围内,有利于增大炉渣的液相区面积。验证试验表明,在熔炼温度为1 150 ℃、w(CaO)/w(SiO2)= 0.3、w(Fe)/w(SiO2) =0.8条件下,采用富氧顶吹熔炼处理硫化铅精矿搭配硫尾矿渣可顺利进行,熔炼过程金属直收率为8%,渣中铅质量分数可达49.12%,烟尘率为13.18%。  相似文献   

12.
 为了探明高炉渣系组成对高炉渣脱硫能力的影响,根据分子-离子共存理论,建立了CaO-SiO2-MgO-Al2O3高炉渣系与铁液间硫分配比的热力学模型,利用试验测定值对其进行验证与修正,探究碱度Rw((MgO))/w((Al2O3))和w((Al2O3))对炉渣脱硫能力的影响。研究结果表明,修正后的CaO-SiO2-MgO-Al2O3高炉渣系硫分配比(LS)热力学模型能较好地预测熔渣的脱硫能力,修正后的相对误差为8%,较修正前的相对误差降低了11%;当w((MgO))/w((Al2O3))=0.25~0.45,w((Al2O3))=15%时,随着碱度R的增加,炉渣的脱硫能力(LS)增大;当w((Al2O3))=15%,R=1.15~1.25时,随着w((MgO))/w((Al2O3))的增加,炉渣的脱硫能力(LS)增大;当w((MgO))/w((Al2O3))=0.25~0.45,R=1.20时,随着w((Al2O3))的增加,炉渣的脱硫能力(LS)减小,故高Al2O3条件下应适当增加炉渣中的w((MgO))/w((Al2O3))。  相似文献   

13.
 为了研究在转炉冶炼中高FeO转炉渣条件下钢液的脱磷行为,采用双联法在某钢厂300 t脱磷转炉上展开高氧化性转炉渣脱磷工业试验。通过理论分析并结合XRD、拉曼光谱分析等手段,研究了脱磷温度、转炉渣矿相结构以及终渣成分等因素对高FeO转炉渣条件下钢液的脱磷的影响。通过热力学公式计算发现,脱磷转炉最佳理论脱磷温度约为1 675 K。对比分析了不同脱磷效果的转炉渣的矿相结构,结果表明,2CaO·SiO2和3CaO·P2O5矿相结构有利于脱磷反应的进行,3CaO·SiO2对脱磷效果的影响不明显;Si—O—Si键和[FeO4]键特征峰面积越大,Q0和Q2单元特征峰面积越小,脱磷效果越好。最后研究了脱磷炉钢液脱磷率≥60%时终渣成分的最佳控制工艺参数,碱度R为1.05~1.30,w([FeO])为33%~37%,w([MgO])≤3.0%,w([MnO])为4.3%~5.4%。本研究可以为钢铁企业采用双联法开发超低磷钢提供理论依据和技术指导。  相似文献   

14.
 为了研究工艺对C82DA钢中硫和铝的影响,对帘线钢在LF精炼过程脱硫控铝进行了研究。结果表明,随着精炼碱度的降低脱硫率越来越低,碱度约为1.6时,渣中w((FetO)+(MnO))约为1%,基本达到脱硫的临界值;碱度约为1.2时,随着精炼的进行开始回硫,钢液中w([Als])随着碱度的降低逐渐降低;碱度约为2.2时,w([Als])降幅显著;碱度小于1.6时,对铝的影响不明显。精炼炉采取两步造渣工艺,精炼前期高碱度渣系脱硫,精炼后期降低碱度,钢液中铝含量降低。当碱度从2.2降低至1.2时,钢液中w([S]) 和w([Als])分别控制在0.011%和0.001 6%。  相似文献   

15.
为了提高钢渣的资源化利用率,找到合适的钢渣成分改质工艺,以CaO-SiO2-MgO-FeO-Fe2O3-Al2O3六元渣系为研究对象,利用FactSage热力学软件计算并分析了不同w(CaO)/w(SiO2)组成的模拟钢渣在1 600~200 ℃冷却过程中平衡物相组成和含量的变化规律。得出钢渣的平衡物相主要有Ca2SiO4相、Ca2(Al,Fe)2O5相、MgO-FeO固溶体相、f-CaO相、少量的Ca3MgAl4O10相以及w(CaO)/w(SiO2)为2时钢渣中才会析出的Ca3MgSi2O8相。w(CaO)/ w(SiO2)越低,钢渣析出的有益相硅酸盐相含量越高,而铁酸盐相、MgO-FeO固溶体相和f-CaO相不利于钢渣循环利用的物相含量越低。因此,降低钢渣的w(CaO)/ w(SiO2)可以改善钢渣在后续处理和使用过程中的易磨性以及安定性。  相似文献   

16.
刘坤龙  吕明  宋保民  张朝晖  王建江  方明 《钢铁》2022,57(12):79-87
 基于某钢厂Q355B铝镇静钢冶炼过程生成高熔点夹杂物,出现探伤不合格的问题,通过全流程取样分析钢中夹杂物的演变规律,发现原工艺LF精炼过程钙处理前夹杂物主要为低CaO含量的CaO-MgO-Al2O3系夹杂物,Al2O3质量分数约为77%。钙处理后,钢液中CaO-MgO-Al2O3系夹杂物向液相区左侧CaO含量高的区域靠近,Al2O3质量分数减少至32%;同时,CaS在钙铝酸盐表面异质形核,出现CaS-CaO-Al2O3系夹杂物,夹杂物中CaS质量分数增加至23%。应用热力学平衡模型计算钙处理钢液中S-Ca、Al-Ca及Al-S反应平衡曲线。结果表明,在1 873 K下生成C3A、C12A7、CAL等低熔点钙铝酸盐类夹杂物,钢液内w([Al])和w([Ca])的关系应分别满足 w([Al])2/w([Ca])3≤7.83×103、2.36×105、1.18×107,w([Al])和w([S])的关系应分别满足 w([S])3×w([Al])2≤7.79×10-12、8.36×10-11、8.14×10-10;当钢液中w([Al])为0.007 5%时,w([Ca])和w([S])分别控制在0.000 62%~0.001 9%、0.001 6%~0.005 1%范围内有利于生成理想液态产物C12A7。结合夹杂物分析及热力学计算,优化调整了脱氧、喂线等生产工艺,将铝块加入量由0.8 kg/t降低至0.7 kg/t,喂硅钙线量由300 m/炉降低至200 m/炉,并进行全流程取样分析夹杂物变化。发现钙处理后,CaS-CaO-Al2O3系夹杂物中,CaS质量分数降低至约5%,夹杂物分布在低熔点液相区域附近,铸坯中钢液w([Ca])由0.003 1%降低至0.001 5%~0.002 2%;最终夹杂物体系为(CaS)-CaO-(MgO)-Al2O3低熔点复合相夹杂物,防止了高熔点钙铝酸盐类夹杂物及CaS类夹杂物的产生,提高了铸坯质量。  相似文献   

17.
高钛焊丝钢连铸过程中结晶器内钢渣界面反应严重,首先对存在严重钢渣界面反应现象的A钢种进行了凝固特性分析。设计一种低反应性的高钛焊丝钢专用的CaO-Al2O3渣系保护渣。通过相图计算保护渣的基础组分w(CaO)/w(Al2O3)=1.0,Na2O质量分数为8%,MgO质量分数为3%,CaF2质量分数为4%~6%,B2O3质量分数为4%~10%,SiO2质量分数为4%~12%,TC质量分数为8%~10%。利用熔点熔速测定仪和旋转黏度计等设备重点研究了保护渣的熔化特性。得出适宜组分的CaO-Al2O3基高钛焊丝钢专用保护渣,熔点为1 037~1 129 ℃,熔速为64~79 s,黏度(1 300 ℃)为0.325~0.554 Pa·s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号