首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
构建了三室双阴极MFC系统,对系统同步硝化反硝化脱氮产电性能进行了研究,考察了进水COD、NO-3-N和NH+4-N浓度对系统脱氮产电性能的影响。结果表明,该MFC系统对COD和NH+4-N具有良好的去除效果,去除率分别高达98%和95%以上,反硝化和产电能力受进水COD、NO-3-N和NH+4-N初始浓度的影响较大,NO-3-N最大去除率73.6%,厌氧阳极、缺氧阴极和好氧阴极的最大功率密度分别达到1.88,0.74 W/m3和0.59 W/m3,阳极和缺氧阴极的最大库伦效率分别只有27.6%和63%,说明有其他非电化学反应过程的存在。实验结果也表明好氧阴极和缺氧阴极之间存在着对电子的竞争作用,NH+4和电极之间存在着对O2的竞争。  相似文献   

2.
为提高双阴极MFC的脱氮性能,构建了分段进水的双阴极微生物燃料电池系统,以考察了厌氧室和缺氧室分段进水的进水分配比MFC脱氮产电性能的影响。通过监测实验过程中各极室NO_3~--N、NO_2~--N、NH_4~+-N、COD的去除情况以及MFC各项产电指标的变化情况,分析进水分配比对电池性能的影响。结果表明:采用分段进水的MFC能有效提高MFC对总氮的去除效果,进水配水比为1∶1时对TN的去除效果最好,去除率由49.89%提升至79.94%;缺氧室进水流量越高对NO_3~--N的去除效果越好,进水配水1∶3时,NO_3~--N出水浓度由17.28 mg·L~(-1)降至2.93 mg·L~(-1)。分段进水对产电性能的抑制明显,尤其是在缺氧阴极,缺氧室进水流量越高抑制越明显,缺氧阴极的功率密度由100.63 mW·m~(-3)降低至0.03 mW·m~(-3)。本研究探明了进水配水比对分段进水双阴极MFC脱氮产电性能的影响,为进一步提高MFC脱氮产电性能提供依据。  相似文献   

3.
单室型无质子膜微生物燃料电池协同去除COD和含氮污染物   总被引:2,自引:0,他引:2  
分别驯化、培养厌氧消化菌和反硝化菌,以间距180μm(80目)的不锈钢网为电极,构建了单室型无质子交换膜微生物燃料电池(MFC)污水处理系统,厌氧消化菌在阳极附着成膜组成生物阳极氧化去除有机污染物,反硝化菌在阴极附着成膜组成生物阴极反硝化去除含氮污染物,实现污水深度处理。在电池系统稳定运行期间,最高开路电压为182.5 mV时,COD的去除率为96.5%;NH4+-N和NO3-N的去除率分别高于93.5%和96.7%,出水中NO2-N的含量低于0.072 mg L 1。当阳极室和阴极室分开时,COD、NH4+-N和NO3-N的最大去除率之和分别为67.0%、76.9%和84.0%,均明显低于阳极室和阴极室连通的MFC系统的去除率,这表明该MFC系统具有良好的有机污染物和含氮污染物协同去除能力。  相似文献   

4.
生物脱氮是目前处理水体氮素污染的有效方法,本文以(NH4)2SO4为氮源、柠檬酸三钠为碳源培养好氧反硝化菌H1,4天后NH4+-N的去除率达到76.92%,COD去除率达到84.29%,说明H1为异养硝化-好氧反硝化菌。当NH4+-N与NO3--N同时存在时,H1对NH4+-N的去除率在2天后即达到80%以上,但对NO3--N的去除明显滞后,说明H1优先利用NH4+-N。利用H1处理生活污水,其能够促使污水中的有机氮迅速转化为氨氮,最终使污水中总氮、NH4+-N、COD的去除率均达到90%以上,表明H1在生活污水处理领域具有巨大的应用前景。  相似文献   

5.
废水脱氮中好氧反硝化现象的研究   总被引:4,自引:0,他引:4  
采用SBR工艺,对废水脱氮中的好氧反硝化现象进行了研究。试验工序为:缺氧搅拌3h、曝气8h、缺氧搅拌1.5h、沉淀1h、排水。当进水ρ(NH4+-N)为107mg/L,ρ(CODCr)为700mg/L时,好氧段NH4+-N的去除率达到53.3%,TN的去除占整个周期TN去除的71.23%,表明好氧反硝化现象对整个周期的脱氮起着主要的作用。  相似文献   

6.
微生物燃料电池(Microbial fuel cells,MFCs)用于低C/N废水脱氮具有较好的应用前景。研究以模拟尿液为底物,考察了曝气方式与膜材料对双室MFC产电性能和脱氮效果的影响。结果表明,当进水COD浓度为1500 mg/L、C/N为2,两个MFC均具有良好的除氮脱碳效果,COD降解率平均值高于89%,总氮去除率平均值高于72%。产电能力最强的是间歇曝气状态下的MFC2,采用阳离子交换膜,最高输出电压为702.1 mV,最大输出功率密度为365.14 W/m~3;阳离子交换膜有利于提高MFC的产电性能,质子交换膜具有良好的有机物降解和脱氮效果。间歇曝气可为阴极室提供较低浓度的溶解氧,MFC的产电性能和脱氮能力明显优于不曝气方式。  相似文献   

7.
碳氮比及pH对厌氧氨氧化与反硝化耦合的影响   总被引:1,自引:0,他引:1  
利用上流式厌氧生物滤池反应器(UAF),向已完成厌氧氨氧化和异养反硝化耦合菌富集培养的UAF反应器中连续添加硝酸盐和有机物,研究了pH和不同低m(C)/m(N)对厌氧氨氧化和反硝化反应耦合脱氮活性的影响.结果表明,耦合脱氮反应的最佳pH为7.5,NO3--N、NH4+-N和COD的去除率分别在40%、25%和80%左右;在5个不同低m(C)/m(N)下,以1:2时耦合脱氮效果最佳,NO3--N、NH+-N和COD的去除率分别在35%、20%和60%左右.  相似文献   

8.
不同来源菌群接种微生物燃料电池处理淀粉废水的研究   总被引:1,自引:0,他引:1  
以人工模拟淀粉废水为底物运行微生物燃料电池(MFC),分别采用淀粉废水、生活污水和二者的混合液为接种液,考察不同来源菌群接种下,MFC产电能力与废水处理效果。研究结果表明,采用混合液接种时,MFC启动时间相对于淀粉废水和生活污水接种分别缩短了29.6%和26.9%,最大产电功率密度分别提高了156%和6.1%;COD、NH4+-N去除率略有提高。对利用混合液接种的MFC进一步优化,结果表明,当MFC基质pH为9,NaCl质量浓度为1.0 g/L,基质COD为3 100 mg/L,温度为30℃时,MFC的产电能力与废水处理效果最佳,产电功率密度达4.63W/m3,COD去除率为86.3%,NH4+-N去除率为82.6%。  相似文献   

9.
在SBR反应器中通过控制好氧段实现同时硝化反硝化(SND)过程,对豆制品废水脱氮进行研究。研究了不同C/N和温度对出水NH4+-N和TN的去除率的影响,结果表明,当进水氨氮浓度为210 mg/L,C/N=3.81时,温度为27℃时,NH4+-N和TN的去除率最好,分别为99.14%和65.57%,系统运行良好。  相似文献   

10.
利用剩余污泥水解酸化液作为外加碳源研究中部曝气和底部曝气曝气生物滤池(BAF)处理低碳氮比生活污水时的生物脱氮性能。结果表明,碳源与污水投配的流量比以及是否回流对BAF生物脱氮效果影响明显,气水流量比和回流流量比对BAF生物脱氮效果有一定影响;进水NH4+-N、TN质量浓度和COD分别为43.11、45.07、29.2mg.L-1时,中部曝气BAF的NH4+-N和TN去除率分别为99.04%和78.32%,出水COD为32.4 mg.L-1;底部曝气BAF的NH4+-N和TN去除率分别为98.61%和68.99%,出水COD为28.4 mg.L-1。研究表明,BAF在2种运行方式下可获得良好的硝化与反硝化性能,且不会引起二次污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号