首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以黑曲霉发酵液为基质实现了温和条件下纳米吸附剂羟基磷灰石(bHAP)的绿色合成。利用SEM-EDS、XRD、FTIR、TG-DTA等手段对bHAP进行表征分析,并考察其对水中Cd2+的吸附行为和机理。实验结果表明:黑曲霉发酵液辅助合成的bHAP呈圆形片状结构,分散性良好,颗粒尺寸小于200 nm,且含丰富的生物官能团。静态吸附实验证实,在pH=7、初始质量浓度为50 mg/L的Cd2+溶液中投加0.5 g/L的bHAP,吸附8 h后bHAP对Cd2+的饱和吸附容量达93.81 mg/g。吸附过程符合准二级动力学模型和Tempkin吸附等温模型。机理分析表明,黑曲霉辅助合成的bHAP对Cd2+的吸附去除是离子交换和表面络合共同作用的结果。  相似文献   

2.
以原矿膨润土为原料,对其结构进行表征和分析。然后从单因素条件分析膨润土对Cu2+、Cd2+、Pb2+的吸附效果。结果表明:在相同条件下,膨润土加入量为0.30 g、温度为25℃时,Cu2+初始浓度为200 mg/L,溶液pH值为5.0,其最大吸附率为99.92%;Cd2+初始浓度为150 mg/L,溶液pH值为6.0,其最大吸附率为99.84%;Pb2+初始浓度为50 mg/L,溶液pH值为3.5,其最大吸附率为99.12%。竞争吸附中膨润土对Cd2+吸附效果最佳。此研究对处理含重金属离子的废水具有较好的潜在价值。  相似文献   

3.
以硝酸铁和氢氧化钾为原料制备得到羟基氧化铁样品,考察其对Cd2+的吸附效果及吸附等温线与吸附动力学特性。采用XRD、SEM、BET、FT-IR、XPS对样品形貌、结构进行表征并分析其吸附机理。结果表明,实验所制得羟基氧化铁产物为α-Fe OOH,在p H为5~7时对Cd2+有良好的吸附效果。在温度为25℃、吸附剂投加量为0.03 g、p H为6、背景腐殖酸(HA)质量浓度为20 mg/L、Cd2+初始质量浓度为20 mg/L条件下,α-Fe OOH对Cd2+的吸附量可达20.34 mg/g,吸附过程较好地遵循了Langmuir、Freundlich等温吸附模型与准二级动力学模型。α-Fe OOH表面羟基及吸附在α-FeOOH表面HA层中羧基对Cd2+的络合是其主要吸附机制。  相似文献   

4.
以钾长石为原料,用液相合成法制备碳羟基磷灰石/钾长石吸附剂(CHAK)去除水中的重金属镍,用静态吸附实验考察了CHAK添加量、溶液初始pH、吸附时间、镍初始浓度等因素对镍去除效果的影响,并结合动力学及热力学拟合探究吸附机理。结果表明:随着CHAK量的增加,对Ni 2+的去除率增加,但吸附量会降低;溶液pH=6时吸附效果达到最佳;吸附时间为10 h时吸附达到平衡;Ni 2+溶液的初始质量浓度为50~4 000 mg/L时,CHAK对Ni 2+的吸附量呈先增长后平稳趋势,饱和吸附量与原材料相比增大7.1倍。动力学及热力学拟合结果显示:准二级模型更符合描述该吸附行为。ΔH>0,表明该吸附过程为吸热反应,升温有利于吸附。ΔG<0,表明该反应能自发进行。  相似文献   

5.
以核桃青皮为原料,分别在300、500、700℃条件下限氧热解制备核桃青皮生物炭,标记为WP300、WP500和WP700,并应用于溶液中Cd2+的吸附,筛选出吸附效果最佳的生物炭材料;研究生物炭投加量、溶液pH、Cd2+初始浓度对生物炭吸附效应的影响;并结合吸附动力学和等温吸附模型探讨核桃青皮生物炭对Cd2+的吸附过程和作用机制。结果表明,500℃下制备的核桃青皮生物炭(WP500)比表面积最大,对Cd2+的吸附效果最佳;当Cd2+的初始质量浓度为100 mg/L,WP500的最佳投加量为1.9 g/L;在pH为1~8,pH的升高使得WP500对Cd2+的去除率提高;温度为303.15 K时,WP500对Cd2+的吸附效果最好,对Cd2+的理论吸附量为99.994 mg/g;WP500对Cd2+的吸附符合Langmuir模型,对Cd2+的吸附动力学更符合准二级动力学模...  相似文献   

6.
碳羟基磷灰石除废水中六价铬的吸附性能研究   总被引:2,自引:0,他引:2  
利用废弃蛋壳为原料,水热法合成碳羟基磷灰石(CHAP)吸附剂,用它去除含铬废水中六价铬,研究了pH、六价铬初始质量浓度、吸附时间等对吸附效果的影响.结果表明:常温下,溶液pH为3、碳羟基磷灰石用量为5 g/L时,对100 mL 50 mg/L的六价铬吸附速度较快,30 min基本上达到吸附平衡,去除率为98.3%,最大吸附量高达29.85 mg/g.用Langmuir和Freundlich方程拟合碳羟基磷灰石对六价铬的吸附等温式,相关系数分别为0.998 4和0.922 6,说明这两个方程都较好地描述吸附过程.通过氢氧化钠或硫酸浸泡和微波加热处理对吸附后的碳羟基磷灰石进行再生试验,再生率高达94.3%和94.8%.  相似文献   

7.
用Fe3O4对谷壳生物炭进行改性得到磁性生物炭。利用SEM、XRD对磁性生物炭进行表征,并通过响应面优化和共吸附实验探究该生物炭在共吸附系统中对As3+和Cd2+的吸附性能。结果表明,在pH为5.0、镉(砷)初始质量浓度分别为10 mg/L、吸附剂质量浓度为1 g/L时,镉和砷去除率达到最大。在共吸附实验中,As3+和Cd2+共存时,Cd2+质量浓度大于20 mg/L时会抑制生物炭对As3+的吸附,10 mg/L As3+与生物炭达到平衡后可以使50 mg/L Cd2+的吸附量由17.44 mg/g增加到31.91 mg/g,说明砷和镉之间存在协同作用,该协同作用是由于镉、砷与四氧化三铁形成了B型三元表面配合物,增大了镉的吸附量。  相似文献   

8.
以脐橙皮为模板、贝壳粉为原料合成羟基磷灰石(HAP)并用于去除水溶液中的Pb2+。探讨了HAP投放量、pH、反应时间、初始浓度、温度等因素对HAP吸附Pb2+的影响。结果表明,HAP的最佳用量为0.1 g,最佳pH为5.0,平衡时间2 h。等温吸附较好的符合Freundlich模型,15℃、25℃、35℃下的饱和吸附量分别为83.37 mg/g、90.06 mg/g、109.44 mg/g。吸附的机理主要是离子交换,孔内扩散是速控步骤。  相似文献   

9.
以大宗农业废弃物玉米秸秆为原料, 借助高温焙烧制得了玉米秸秆生物炭, 并通过对水中铅镉的吸附实验, 考察了高热解温度生物炭的重金属脱除性能。结果显示: 800 ℃焙烧所得玉米秸秆生物炭以块状及棒状形态为主, 孔径以微孔居多, 灰分中碱金属及碱土金属占比较大; 在25 ℃、pH值4、960 min、Pb2+、Cd2+初始质量浓度分别为429.24和280.34 mg/L时, 生物炭对Pb2+和Cd2+最大吸附量分别为94.79和24.47 mg/g; 该去除过程满足准二级动力学方程、Freundlich等温线模型, 在铅镉初始质量浓度均为150 mg/L时, 所得平衡吸附容量可达69.0、24.4 mg/g; 热力学分析显示, 该去除过程为吸热熵增过程; 而共存离子吸附实验显示, 铅离子对镉离子存在明显的拮抗作用。高热解温度玉米秸秆生物炭对水中铅镉的去除过程是物理吸附与化学沉淀共同作用的结果。  相似文献   

10.
本文以剩余活性污泥为基体,通过高温热解处理及对其进行酸改性,制备出高效多孔生物炭吸附剂。考察了吸附温度、溶液初始pH和吸附剂投加量对Mn2+吸附效果的影响。在Mn2+初始浓度为4mg/L、吸附剂投加量为0.5g、吸附时间120min、pH为2条件下,20℃时Mn2+去除效率最高为72.55%;在Mn2+初始浓度为4mg/L、吸附剂投加量为0.5g、吸附时间120min、20℃条件下,pH为2时Mn2+去除效率最高为73.63%;在Mn2+初始浓度为4mg/L、吸附时间120min、20℃条件下,pH为2条件下,吸附剂投加量为0.5g时Mn2+去除效率最高为73.08%。生物碳吸附剂对Mn2的吸附率由改性前的45.97%,提高到改性后的73.63%。实验结果表明,改性后的吸附剂相较于改性之前较大幅度提升了对于重金属离子的吸附能力。  相似文献   

11.
粘质沙雷氏菌HB-4吸附重金属镉的机制   总被引:1,自引:0,他引:1       下载免费PDF全文
从重金属污染土壤中筛选出1株对Cd2+具有高耐受能力和高吸附容量的菌株HB-4,经16S rDNA序列分析鉴定为粘质沙雷氏菌(Serratia marcescens)。该菌株能在Cd2+浓度为300 mg·L-1的条件下正常生长;对Cd2+的最大吸附量为(154.7±0.9( mg·g-1。考察了Cd2+初始浓度、pH、盐浓度以及共存离子对HB-4吸附Cd2+的影响,结果表明:pH=3.0~8.0时,对吸附效果无影响;NaCl含量为8.0%时,菌株对Cd2+的去除率仍可达到49.9%±0.1%;Pb2+、Zn2+、Cu2+与Cd2+共存时,几种重金属离子的去除率分别为98.7%±0.2%(Pb2+)、44.6%±0.6%(Zn2+)、52.7%±0.1%(Cu2+)和64.2%±0.3%(Cd2+)。解吸实验证明了HB-4对Cd2+极强的吸附能力,洗脱液pH=7.0时,解吸率小于2%。检测了细胞内外镉的分布情况,并利用SEM、XPS和FTIR对吸附机理进行了研究,推断HB-4对Cd2+的吸附机理为胞外吸附和胞内摄取。  相似文献   

12.
为获得铀酰(UO22+)吸附性能高的吸附剂,以蒙脱石(Montmorillonite,MMT)和铁酸盐(ZnFe2O4)为原材料与L-半胱氨酸通过水热反应制备了硫掺杂ZnFe2O4(S-ZnFe2O4)和ZnFe2O4/MMT(S-ZnFe2O4/MMT),采用XRD、FTIR和SEM对S-ZnFe2O4和S-ZnFe2O4/MMT进行了结构表征,研究了pH、接触时间和UO22+初始质量浓度对UO22+吸附效果的影响,结果表明:S-ZnFe2O4呈高分散的纳米颗粒状,并且均匀分布于蒙脱石片层结构表面;S-ZnFe2O4与蒙脱石复合后能明显提高其UO22+吸附性能,最佳吸附pH为6.0;S-ZnFe2O4和S-ZnFe2O4/MMT复合材料对UO22+的最大吸附量分别为51.44 mg/g和68.45 mg/g;吸附符合Langmuir等温吸附模型和伪二阶动力学模型,说明吸附过程属于表面单分子层化学吸附。  相似文献   

13.
层迭灵芝子实体及其制备炭吸附Cd2+的研究   总被引:1,自引:0,他引:1  
以大型真菌层迭灵芝(Ganoderma lobatum)子实体及制备炭作为吸附材料用于吸附Cd2+,研究了吸附剂用量、初始pH值、反应时间、初始Cd2+质量浓度对吸附的影响。结果表明,当Cd2+质量浓度为10 mg/L时,层迭灵芝子实体及制备炭吸附Cd2+的最佳条件为吸附剂用量0.2 g,pH值为7,吸附时间为480 min,在此条件下Cd2+最大去除率分别为94.50%和92.75%。子实体对Cd2+的吸附速率显著高于制备炭,但子实体和制备炭吸附Cd2+的吸附能力之间无显著差异。采用Langmuir和Freundlich等温吸附模型研究子实体和制备炭吸附Cd2+的过程,子实体对Cd2+的吸附过程符合Freundlich模型,而制备炭更符合Langmuir模型。吸附动力学研究表明子实体和制备炭对Cd2+的吸附过程均符合准二级动力学模型。  相似文献   

14.
将乙酰丙酮稳定的钛酸四正丁酯分散到含有硬脂酸的水中,接着加入Ca2+、H2PO4-源,然后通过150℃的水热过程,合成了TiO2/羟基磷灰石(HAP)复合微球。其中的硬脂酸作为界面媒介吸附Ca2+,确保生成的羟基磷灰石的粒子吸附在分散的钛酸四正丁酯球形"油滴"表面。经水热过程,分散的油滴转化为TiO2 为内核,HAP为壳层的复合微球。HAP粒子组成的微球外壳层对内核钛酸四正丁酯水解及缩聚反应而引起的体积收缩产生抑制作用,从而对最终的TiO2 内核的微结构产生影响。亚甲基蓝的紫外光催化降解实验结果表明,复合微球的光催化性能与微球对亚甲基蓝的平衡吸附量有密切的关系,并取决于产品的微结构。当复合微球中羟基磷灰石的理论质量分数为1%~1.5%时,微球对亚甲基蓝显示了较高的光催化降解效率。  相似文献   

15.
贺盛福  张帆  程深圳  汪伟 《化工学报》2016,67(10):4290-4299
采用溶液分散聚合和Ca2+表面交联制备了聚丙烯酸钠包覆Fe3O4的磁性交联聚合物(CPAANa@Fe3O4),对其进行了XRD、FT-IR、SEM和TGA等表征。以CPAANa@Fe3O4为吸附剂研究了CPAANa@Fe3O4对水溶液中Pb2+、Cd2+的静态吸附,考察了溶液pH、吸附剂投加量、金属离子初始浓度对吸附的影响。结果表明:CPAANa@Fe3O4在pH 2~6范围内均具有较好的吸附性能,当吸附剂投加量分别为1.0 g·L-1和1.6 g·L-1时对初始浓度分别为200 mg·L-1的Pb2+和100 mg·L-1的Cd2+的去除率达到最大,可使Pb2+实现达标排放(GB 8978-1996);CPAANa@Fe3O4对Pb2+和Cd2+的吸附动力学符合准二级模型,吸附等温线符合Langmuir模型,对Pb2+和Cd2+的最大吸附量分别为454.55 mg·g-1和275.48 mg·g-1。将CPAANa@Fe3O4用于处理实际电解矿浆废水,发现能有效吸附其中的Pb2+和Cd2+,具有潜在实用价值。  相似文献   

16.
氟离子在饮用水中浓度超过1.0mg/L,将对人体健康造成极大危害.通过原位共沉淀法将具有磁性的四氧化三铁掺入羟基磷灰石(HAP)中制备磁性HAP.磁性HAP可通过普通磁体将其吸附并分离回收.实验结果表明,最佳的制备条件为反应温度和时间为60℃和1h,陈化温度和陈化时间为25℃和12h,四氧化三铁用量为0.08g.比较了HAP和磁性HAP对水溶液中氟离子的去除效果.Langmuir模型更适合于该体系,拟合得到最大吸附容量为13.70mg/g,说明磁性HAP对氟离子的吸附属于单层吸附.ΔG0<0和ΔH0>0表明该吸附过程为自发的吸热过程.吸附过程符合拟二级动力学.磁性HAP循环再生使用4次以上,仍能保持85%以上的除氟效率.高吸附容量和优异的循环使用性能表明磁性HAP是一种有效的、可重复使用的除氟吸附剂.  相似文献   

17.
选用玉米醇溶蛋白(zein)作为鞘层包裹材料、木质素磺酸钠(SLS)作为芯层强化材料,采用同轴电纺技术制备了可有效吸附重金属离子的zein-SLS纤维膜。优化了膜制备工艺条件,确定纺丝电压适宜为14 kV,芯鞘层进料速率比适宜为1∶1。TEM证实,SLS被成功包埋于zein纤维膜中,但其负载量、包埋率和流失率受溶液pH的影响。离子吸附测试结果表明,SLS的加入可强化zein纤维膜对三种金属离子Ni2+、Zn2+、Cd2+的吸附效果,其中对Zn2+吸附能力的强化效果最为显著,上述吸附过程符合准二级吸附动力学模型。同时,在酸性条件下,随着pH的上升,zein纤维膜对Ni2+、Zn2+、Cd2+的吸附能力逐渐提高。  相似文献   

18.
Hydroxyapatite (HAP) is a common bio-adsorbent, which performance depends heavily upon its morphology and microporous structure. In this study, a novel synthesis strategy was proposed for hierarchical porous HAP microspheres by a simple “one-pot” hydrothermal reaction. In the strategy, L-glutamic acid serves as soft template to modulate the morphology and inner crystalline of HAP. To evaluate the application potential, doping Ni2+ on hierarchical porous HAP microspheres gives metal chelated affinity adsorbents. The prepared adsorbents show a perfect spherical shape, particles size of 96.6 μm, relatively specific surface area of 48.5 m2·g-1 and hierarchical pores (mesopores: 4 nm and macropores: 53 nm). By the adsorption evaluation, it reveals that the Ni2+-HAP adsorbents have high adsorption capacities of 275.11 and 97.55 m2·g-1 for hemoglobin and bovine serum albumin, respectively, which is comparable to other similar adsorbent. Therefore, this work provides a promising method for high-efficiency hydroxyapatite microspheres for proteins purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号