首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
采用离子交换法对Li-LSX分子筛进行Ag~+改性,利用正交实验法探究制备AgLi-LSX分子筛的最佳工艺条件,通过不同交换次数获得了不同阳离子交换度的AgLi-LSX分子筛,并采用SEM、TEM、FTIR、XRD、ICP、EDS、BET等手段对分子筛的骨架结构、晶体构型、元素含量、孔结构进行表征。结果表明,AgLi-LSX分子筛的最佳制备工艺条件为反应温度90℃,反应时间120 min,Ag~+浓度0.4 mol/L。当交换次数为2次,Ag~+交换度为51.67%时,AgLi-LSX分子筛的氧气吸附量为4.473 5 mL/g,比Li-LSX分子筛提高了96.91%,并且Ag~+改性并没有改变X型分子筛的骨架结构和晶体构型。  相似文献   

2.
张鹏  刘坚  喻昊  王更更  胡长禄  杨英  刘百军 《化工进展》2019,38(4):1753-1757
为克服常规氧化铝型重整催化剂氯离子流失及对设备产生腐蚀等问题,通过离子交换法制备了Mg2+改性的L分子筛,采用浸渍法制备了不含氯离子的Pt/MgL重整催化剂,对分子筛载体进行了XRD、N2吸附-脱附、NH3-TPD和Py-IR等表征,并以硫含量0.50μg/mL工业精制石脑油为原料在固定床微反装置上评价了催化剂重整芳构化性能。结果表明,Mg2+离子交换对L分子筛的骨架结构没有破坏,Mg2+的存在提高了载体的酸量和酸强度,Mg2+改性的Pt/MgL催化剂重整芳构化性能明显提高,适当强酸性对L分子筛重整催化剂芳构化反应起到显著的促进作用。  相似文献   

3.
刘晴  居沈贵 《化工进展》2011,30(4):886-890
采用二次合成法合成ZSM-5分子筛膜,并用XRD和SEM对其表面进行表征,所合成的膜为ZSM-5分子筛膜。对分子筛膜用Ag+、Cu2+、Fe3+金属离子进行改性,改变离子浓度,然后应用于模拟汽油中苯并噻吩和2,5-二甲基噻吩的分离性能研究,同时还考察了不同料液温度、再生次数对膜脱硫的影响。实验结果表明:负载Ag+浓度为0.2 mol/L时对苯并噻吩和2,5-二甲基噻吩的分离效果最好,分离因子最高可达到1.65;料液温度在常温(25 ℃)下脱硫效果最好,通过简单方法对膜进行再生,考察再生膜脱硫具有较好的稳定性。  相似文献   

4.
采用水热合成法制备了硼掺杂Y分子筛(B-Y分子筛),并对其进行铵交换和水热处理,得到了改性B-Y分子筛(B-USY分子筛)。利用多种表征技术对B-Y分子筛及B-USY分子筛的组成、孔道结构、酸性质进行了表征,并将改性后的B-USY分子筛应用于重整生成油脱烯烃反应。结果表明:引入硼以后,Y分子筛的晶胞参数减小、相对结晶度降低、骨架稳定性下降;硼的引入促使改性过程中脱铝深度增加,并且形成连通介孔。相比于未掺杂硼的Y分子筛改性后的USY分子筛,B-USY分子筛具有丰富的连通介孔和良好的孔道扩散性能,并且保留了更多弱的B酸位点。以重整C7+芳烃为原料,在反应温度为170℃、反应压力为1.2 MPa、空速(LHSV)为10 h-1条件下,B-USY分子筛催化剂的单程寿命较USY分子筛催化剂提升30%。  相似文献   

5.
废轮胎经热解制备得到热解油和热解炭,热解炭活化制得活性炭,并利用Ag+对活性炭进行改性制得Ag+改性活性炭(Ag/AC),将Ag/AC用于热解油的吸附脱硫实验,并利用GC/MS对热解油中的含硫化合物进行了分析。研究结果表明:活性炭吸附脱硫的合适温度和时间分别为20℃和12 h,此时未改性活性炭的脱硫率为15.33%;而Ag/AC的脱硫率提高到了38.6%。GC/MS分析发现热解油中有机硫的主要存在形式为噻吩、2-甲基噻吩、苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩,其中二苯并噻吩(DBT)的GC含量最高,为2.57%。利用原位红外、核磁共振氢谱、ICP-OES和元素分析等检测手段,进一步探究了Ag+与二苯并噻吩模型化合物在溶液中的反应机理,研究发现:二苯并噻吩分子上存在S原子和苯环2个反应位点,当Ag+加入二苯并噻吩溶液后,Ag+与二苯并噻吩分子上的S原子或者苯环发生配位数为1的配位反应生成2种配合物,分子式分别为Ag(DS)NO3和Ag(DC6H6)NO3。  相似文献   

6.
合成气经二甲醚(DME)羰基化合成乙酸甲酯(MA),MA进一步加氢制备乙醇是一种新型高效的煤基合成气制备乙醇路线。采用温和的后处理方法改性DME羰基化分子筛,进一步提高DME羰基化效率,对其工业应用具有重要意义。本研究利用四乙基氢氧化铵(TEAOH)对HMOR分子筛改性处理,探讨了有机碱改性处理对HMOR分子筛的结构和DME羰基化催化性能的影响。研究发现,TEAOH浓度为0.3 mol/L时,HMOR分子筛介孔孔容增大约26%,外比表面积增大约10%,DME的转化率增幅达68%。TEAOH水解产生的OH-能够温和脱除HMOR分子筛中的骨架硅,获得介-微多级孔结构,提高DME羰基化反应过程中的传质速率。此外,水解的TEA+在分子筛表面富集,抑制了OH-的过度脱硅,保护分子筛基本骨架结构不被更深层次破坏。  相似文献   

7.
介孔构建对CuY甲醇氧化羰基化反应活性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
梁家豪  张国强  高源  尹娇  郑华艳  李忠 《化工学报》2021,72(9):4685-4697
采用H4EDTA、H2Na2EDTA和NaOH溶液对原始NaY分子筛分别进行单独酸碱改性和酸碱连续改性,并采用液相离子交换法制备相应的CuY催化剂。结合N2物理吸附、TEM、XRD、29Si NMR、27Al NMR、NH3-TPD、Py-IR、ICP、XPS和CO-FTIR等对载体和催化剂的结构进行表征,研究了NaY分子筛介孔构建对CuY催化甲醇氧化羰基化反应活性的影响。结果表明,NaY分子筛经H4EDTA单独处理后,部分骨架铝被脱除形成非骨架硅铝物种,得到的E-NaY并未形成明显的介孔;E-NaY经H2Na2EDTA酸洗处理后,非骨架铝和部分骨架铝被脱除,得到的EW-NaY具有明显的介孔结构;而E-NaY和EW-NaY经0.2 mol/L NaOH碱处理后,分子筛发生脱硅,同时伴随着非骨架铝重新插回分子筛骨架,得到的E0.2AT-NaY和EW0.2AT-NaY具有丰富的介孔结构。其中,EW0.2AT-NaY的介孔孔容(0.45 cm3/g)最大,且有丰富的Al缺陷结构,能够与反应物接触的Cu+交换位利用率最高。然而,由于EW0.2AT-NaY脱铝程度明显高于E0.2AT-NaY,导致能够与反应物接触的Cu+交换位数量(66 μmol/g)明显小于E0.2AT-NaY(176 μmol/g),最终导致EW0.2AT-CuY催化剂中Cu+活性位数量及催化活性略低于E0.2AT-CuY,二者的催化活性约为原始CuY催化剂的2.2倍。  相似文献   

8.
采用浸渍法以稀土元素(Y、Nd、Ce、La)对NaY分子筛进行改性,并以改性后的分子筛为催化剂,考察催化乳酸脱水制丙烯酸反应活性。通过NH3-TPD、CO2-TPD和XRD等对催化剂进行表征,结果表明,稀土元素进入NaY分子筛骨架,其中,La对分子筛晶体结构影响最小;随着负载稀土元素离子半径的增大(Y3+<Nd3+<Ce3+<La3+) ,总酸性位数量减少,除了重稀土元素Y,弱酸性位比例和中等强度碱性位数量增多,La改性最有利于丙烯酸的生成。稀土元素改性的NaY分子筛在一定程度上提高丙烯酸收率,抑制乙醛生成。以质量分数38%的乳酸为原料,在空速3 h-1、反应温度325 ℃和2%La/NaY分子筛为催化剂时,丙烯酸收率为54.2%,而未改性NaY分子筛上丙烯酸收率仅为34.7%。  相似文献   

9.
通过水热处理、柠檬酸处理及其复合处理对Beta分子筛进行后改性,并以改性后的载体制得铂/Beta催化剂。采用X射线衍射(XRD)、X射线荧光光谱仪(XRF)、程序升温脱附(NH3-TPD)、红外吡啶吸附(Py-IR)、骨架铝核磁共振技术(27Al MAS NMR)及骨架硅核磁共振技术(29Si MAS NMR)等表征了改性前后Beta分子筛的物化性质,并考察了改性前后铂/Beta的多环芳烃选择性开环性能。结果表明,Beta分子筛在柠檬酸处理过程中可同时发生络合脱铝与骨架补铝,实现骨架铝的再分布;Beta分子筛在水热处理过程中优先脱除稳定性相对较低的Si(2 Al)处骨架铝,产生骨架缺陷的同时生成一定比例的二次介孔结构;水热-柠檬酸复合处理影响Beta分子筛骨架补铝及骨架铝再分布的效果,水热处理后Beta分子筛中存在更多的骨架缺陷,促进活性Al(OH)2+物种的骨架补铝作用。当Beta分子筛采用水热-柠檬酸复合处理顺序时,骨架补铝及骨架铝再分布效果显著,样品以中强酸为主,且具有较高的B酸量与L酸量的比值,所制备催化剂的多环芳烃选择性开环活性及稳定性最优。  相似文献   

10.
采用液相离子交换法制备了以金属离子Co2+和Ag+共同改性的AgCo13X分子筛吸附剂,并用XRD、NH3-TPD、BET和TG等技术对其结构进行表征。在模拟柴油中考察了吸附剂对二苯并噻吩(DBT)的脱硫性能。结果表明:AgCo13X分子筛的脱硫性能优于单一离子改性的Co13X和Ag13X分子筛;而Co13X和Ag13X分子筛的脱硫性能又明显高于未改性的13X分子筛。当Ag+离子交换浓度为0.1 mol/L时制备的Co2+和Ag+共同改性的AgCo13X分子筛具有最好的脱硫性能,其脱硫率为99.91%。剂油比为0.02 g/mL,当吸附时间为1 h即可达到吸附平衡;吸附剂具有良好的稳定性和再生性,再生后的脱硫率达到98.21%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号