首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和一种疏水长链烷基烯丙基氯化铵(M-18A)为单体,以溶剂油为油相,采用反相乳液聚合法合成一种两性疏水缔合聚丙烯酰胺增稠剂(AP-AM18)。在最佳合成条件下,利用核磁共振氢谱(~1H NMR)、红外光谱(FTIR)、X-射线衍射(XRD)和热重分析仪(TGA)对AP-AM18进行了表征。红外光谱结果表明,单体发生聚合;XRD图显示其具有非晶体结构;对聚合物AP-AM18的热稳定性分析发现,分解温度超过500℃后,样品质量基本不变,表明聚合物具有良好的耐温性;对AP-AM18进行增稠、耐盐性能测试发现,随着浓度的升高,表观黏度逐渐上升,当浓度为2%时,聚合物AP-AM18在清水中的表观黏度达到893 m Pa·s,在5×10~4mg/L矿化水中,表观黏度达到391 m Pa·s,表明其具有较好的增稠、耐盐性能。  相似文献   

2.
以功能性疏水长链十八烷基二甲基烯丙基氯化铵(HM18)、丙烯酰胺(AM)和2-甲基-丙烯酰氧乙基-三甲基氯化铵(DMC)为原料,利用反相乳液聚合法合成了一种乳液型阳离子疏水缔合聚丙烯酰胺HAM-D。确定了其最佳合成条件:引发剂质量分数为0.04%(以单体总质量计),w(单体)=24%,反应温度为35℃,反应时间为6 h。通过红外光谱(FT-IR)、激光粒度仪、热重分析仪(TGA)和动态流变仪对HAM-D结构与性能进行表征。结果表明,HAM-D乳液粒径分布窄,稳定性好;与普通聚丙烯酰胺相比,HAM-D具有良好的耐热性;随着质量浓度的升高,HAM-D水溶液表观黏度逐渐上升,在5×104mg/L矿化水中仍可达到163 m Pa·s,表明HAM-D具有较好的增稠、耐盐性能;剪切300 s后,表观黏度由249 m Pa·s降到236m Pa·s,表现出良好的耐剪切性能。  相似文献   

3.
阳离子型涂料印花用增稠剂的制备及其性能研究   总被引:1,自引:0,他引:1  
采用反相乳液聚合的方法,以N,N'-亚甲基双丙烯酰胺为交联剂,过氧化氢异丙苯-亚硫酸氢钠为氧化-还原引发剂,对丙烯酰胺(AM)、阳离子单体甲基丙烯酰胺丙基三甲基氯化铵(MAPTAC)进行共聚反应,制备了一种增稠性能好,耐盐性能高,使用方便的阳离子型印花涂料用增稠剂.通过正交实验和极差分析确定了影响增稠性的显著性因素.通过单因素实验确定了最佳反应条件.结果表明:含增稠剂3%白浆的表观黏度可达47 Pa·s,0.05%的氯化钠水溶液巾的黏度保留率为32.9%,黏度指数为23.6%,使用时白浆达到最大黏度时间为1 min.  相似文献   

4.
通过超声辅助,长脂肪链疏水单体丙烯酸十八酯(ODA)与丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)共聚,得到疏水缔合聚丙烯酰胺(OPAM)。通过FTIR,TGA和XRD对聚合物进行了表征,结合表观黏度法和紫外光谱法测试了OPAM的溶液性能,并且进行室内模拟驱油实验。结果表明,OPAM临界缔合浓度(cac)为0.27%(质量分数),溶液在浓度高于cac时,有大量疏水微区形成。引入疏水单体ODA,聚合物热稳定性升高,结晶性下降。OPAM比常规高相对分子质量聚丙烯酰胺(HPAM)驱油效果更好,同等条件下,OPAM驱油效率比HPAM提高了5.5百分点。  相似文献   

5.
将增黏用碳五石油树脂(C_5)作为疏水单体,与丙烯酰胺(AM)聚合反应得到AM/C_5二元共聚物,通过胺甲基化反应制得疏水聚合物Mannich碱。考察了单体质量比、引发剂用量、反应温度以及pH对聚合反应的影响;讨论了反应时间、反应温度以及溶液pH对Mannich碱溶液表观黏度的影响。采用FTIR、~1HNMR对产品进行结构表征,并对产品性能进行分析。结果表明,最佳聚合条件为:反应温度40℃,pH=8,引发剂用量为0.5%(以单体质量计),丙烯酰胺与碳五石油树脂的质量比为15∶1。当反应时间为5 h,温度60~70℃,pH=9,丙烯酰胺、甲醛、二甲胺的物质的量比为1∶1.1∶1.5,Mannich碱溶液黏度达到最佳(418 m Pa·s)。温度为90℃时,Mannich碱的黏度保留率为43.3%;当加入的NaCl、CaCl_2的质量浓度均为2 000 mg/L时,其黏度保留率分别为32.8%、21.7%。该Mannich碱具有较好的增黏、耐温及耐盐性。  相似文献   

6.
采用双水相聚合技术,以硫酸铵水溶液为反应介质,过硫酸铵和亚硫酸氢钠氧化还原体系为引发剂,丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为反应单体,聚2-丙烯酰胺基-2-甲基丙磺酸(PAMPS)为稳定剂,制备了稳定的阴离子聚丙烯酰胺(PAM-AMPS)双水相分散液。采用FTIR、XRD、TG及DTA对产物进行了表征,并对其分散液进行了TEM与稳定性分析。结果表明:共聚物PAM-AMPS为无定形态的非晶聚合物,且热稳定性好;PAM-AMPS双水相分散液稳定性能优良,动力学不稳定指数(TSI)≤0.4,分散相为球形或椭球形液滴,平均粒径为186.2 nm。流变测试显示:ρ(NaCl)=2×10~4mg/L时,PAM-AMPS双水相分散液质量分数(以体系总质量计,下同)从0.2%增至1%,该混合体系黏度从8.22 Pa·s增到60.74 Pa·s;NaCl质量浓度从1×10~4mg/L增至5×10~4mg/L时,含质量分数0.2%的PAM-AMPS双水相分散液的混合体系黏度从10.80 Pa·s降至5.94 Pa·s。因而PAM-AMPS双水相分散液表现出优良的稠化及耐盐性能。  相似文献   

7.
以10#机油为油相,丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,通过反相乳液聚合制备了油包水乳液型聚丙烯酰胺PAM-2,研究了乳化剂、引发剂、温度对PAM-2的影响,以及PAM-2的增稠性能和流变性能。结果表明,当乳化剂为1.2%,引发剂为2‰,引发温度为30℃时,单体转化率达到92%,聚合物分子量为8×106。1%该乳液聚合物在清水中黏度为0.51 Pa·s,在50 000 mg/L的矿化水中黏度为0.18 Pa·s,具有优良的剪切稀释性、往复性和粘弹性。  相似文献   

8.
以10#机油为油相,丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,通过反相乳液聚合制备了油包水乳液型聚丙烯酰胺PAM-2,研究了乳化剂、引发剂、温度对PAM-2的影响,以及PAM-2的增稠性能和流变性能。结果表明,当乳化剂为1.2%,引发剂为2‰,引发温度为30℃时,单体转化率达到92%,聚合物分子量为8×106。1%该乳液聚合物在清水中黏度为0.51 Pa·s,在50 000 mg/L的矿化水中黏度为0.18 Pa·s,具有优良的剪切稀释性、往复性和粘弹性。  相似文献   

9.
以丙烯酰胺(AM)、疏水单体烯丙基十二胺和耐盐单体H-66为原料,通过自由基水溶液聚合制备一种聚丙烯酰胺类聚合物RDTA。通过1H NMR和FTIR表征聚合物结构,通过表观黏度、SEM和流变性能测试研究了RDTA在不同溶液中的缔合效应和该缔合行为随温度变化的影响关系。实验结果表明,RDTA的临界缔合质量分数(W*)在0.25% ~ 0.3%。盐离子对RDTA高分子链的刺激作用能够增强该分子链的结构黏度。弹性模量G′随RDTA质量分数的增加而增大,溶液体系表现出弹性体,体系的空间结构更加密集。70℃、90℃和120℃,170 s-1剪切下,0.5% RDTA在6% NaCl盐溶液中剪切时间 < 300 s时,溶液黏度呈现缓慢上升趋势,说明RDTA在NaCl盐溶液中存在盐刺激RDTA溶液增稠的现象,继续剪切1 h后,剪切剩余黏度仍60 mPa·s以上。  相似文献   

10.
以丙烯酰胺(AM)、丙烯酸(AA)、N-烯丙基油酰胺(NAE)和3-烯丙胺基羰基-1-乙基吡啶溴化铵([mAEPy]Br)为单体,采用氧化还原引发体系,制备了一种含吡啶离子液体结构疏水缔合聚合物驱油剂AM/AA/NAE/[m-AEPy]Br。对共聚物进行了红外、核磁表征,并测定了其增黏性、剪切稀释性、耐温抗盐性,对其提高采收率能力进行了评价。结果表明:2 000 mg/L的共聚物溶液表观黏度可达510.3 m Pa·s;在剪切速率为510 s-1下,其表观黏度为27.2 m Pa·s,且在90℃时其表观黏度为42.8 m Pa·s;在10 000 mg/L NaCl、1 500 mg/L MgCl_2和1 500 mg/L CaCl_2溶液中,其表观黏度分别为21.8、27.4和27.0 m Pa·s;在模拟驱油实验中,共聚物溶液的采收率提高了11.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号