首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本文研究了蒸汽养护条件下,甲酸钙/纳米C-S-H(NC)复合对粉煤灰-水泥体系早期抗压强度的影响,并结合XRD、DSC-TG、MIP、SEM及FTIR等手段分析了其影响机理。结果表明:蒸汽养护条件下掺入甲酸钙能显著提高粉煤灰-水泥体系的早期抗压强度,且掺量为1.5%(质量分数)时效果最佳;甲酸钙能促进水泥和粉煤灰水化,提高水化产物的生成速率,降低粉煤灰-水泥体系的孔隙率和总孔容;在掺入甲酸钙的基础上掺入NC可进一步提高体系抗压强度,且随着NC掺量的增加而提高;NC能促进水化产物生成,提升水化程度,细化孔结构,提高体系致密度。  相似文献   

2.
水泥中掺入大量矿物掺合料易造成其早期强度低、施工周期长等问题。本文研究了C-S-H晶核对含矿物掺合料的复合胶凝材料体系水化性能的影响规律;通过热力学计算阐述了C-S-H晶核降低水化产物成核势垒的机理,并通过离子溶出与沉积探讨大掺量矿物掺合料胶凝体系水化机理。结果表明:矿物掺合料复合胶凝材料体系水化能力较弱,这是由于Ca2+溶出受到制约,C3S的水化反应缓慢;当加入晶核后,水泥中硅酸盐相溶解-结晶能力得到大幅提升,使得矿物掺合料水泥体系的水化反应活性接近纯水泥体系。研究表明,C-S-H晶核可解决大掺量矿物掺合料胶凝体系所带来的水化能力严重不足问题。  相似文献   

3.
陈娇  于诚  慕儒  余鑫 《硅酸盐通报》2021,40(5):1429-1140
随着纳米技术的不断发展,纳米材料逐步开始应用于传统混凝土材料中,以提高混凝土的各项服役性能。纳米水化硅酸钙(纳米C-S-H)是一种新型的早强纳米复合材料,可通过晶核效应加快水泥早期水化速率,显著提高水泥基材料的早期力学性能,从而提高施工效率,满足特殊施工要求。本文系统总结了纳米C-S-H的制备方法,及纳米C-S-H对水泥基材料早期和长期性能的影响规律,探讨了其对于水泥水化过程和水化产物的影响机制,其中重点介绍了采用聚合物分散纳米颗粒制备的C-S-H/PCE(聚羧酸型减水剂,简称PCE)纳米复合材料。  相似文献   

4.
利用沉淀法制备的纳米二氧化硅(PNS)极强的火山灰活性,能改善大掺量矿粉-水泥胶凝体系早期抗压强度低、内部结构疏松等缺陷,研究了PNS对大掺量矿粉-水泥胶凝体系抗压强度、抗氯离子渗透性的影响,通过XRD、TG-DSC及MIP对该体系的水化产物与孔结构进行微观分析。研究表明:随着PNS掺量的增加,试件的抗压强度也随之提高,尤其是7 d抗压强度,掺5%(质量分数,下同)PNS试件的强度增幅达到了20%;同时,水泥抗氯离子渗透能力先上升后下降,PNS掺量为3%时,达到最优,其28 d氯离子扩散系数较不掺PNS降低44.8%。PNS在早期能够大量消耗Ca(OH)2,生成更多的C-S-H凝胶等水化产物,使得孔结构更加致密,降低孔隙率,在适宜范围内掺入PNS还可有效细化孔径。  相似文献   

5.
磷β半水石膏中掺入不同质量分数的水泥和矿粉,组成磷石膏-水泥-矿粉复合材料,主要研究了其耐水性能和体积稳定性,并且采用X射线衍射、扫描电子显微镜等技术分析硬化体的水化产物.结果表明:当水泥和矿粉的掺量分别为5%和25%的时候,其28d的软化系数为0.85,同时体积稳定性好.水泥和矿粉水化过程中,生成的主要产物水化硅酸钙(C-S-H)和钙矾石(AFt)会包裹磷石膏晶体,填充在硬化体的空隙之中,并且二水石膏晶体形貌由交错排列的短粗状变为板状.  相似文献   

6.
巫美强  刘数华 《硅酸盐通报》2019,38(9):2724-273
采用扫描电镜、X射线衍射技术研究了三种杀白蚁剂对水泥基材料的水化产物及其微观结构的影响,并结合掺杀白蚁剂水泥基材料的强度,探究两者之间的内在联系.结果 表明:杀白蚁剂的掺入会降低水泥基材料的强度,且随着杀白蚁剂浓度的提高,强度会逐渐降低.各试验组的主要水化产物均为Ca(OH)2和CaCO3,掺入杀白蚁剂并不会产生新的水化产物.与此同时,掺入较高浓度杀白蚁剂时,有利于促进水泥基材料的早期水化.相比于联苯菊酯和毒死蜱杀白蚁剂,吡虫啉杀白蚁剂对水泥基材料的影响更为严重.  相似文献   

7.
通过对不同高炉镍铁渣掺量的水泥-高炉镍铁渣粉复合胶凝材料水化放热速率、高炉镍铁渣粉的反应程度、硬化浆体化学结合水含量以及水化产物中C-S-H凝胶Ca/Si的测定,分别研究了水泥-高炉镍铁渣粉复合胶凝材料的早期、中长期水化进程、浆体微观形貌以及水化产物特点等水化特性.研究结果表明:高炉镍铁渣的掺入会降低水化放热速率,并推迟水化加速期放热峰的出现时间;在复合胶凝体系中,随着高炉镍铁渣粉掺量的增大,其反应程度和硬化浆体中化学结合水含量将降低.复合胶凝材料水化生成的C-S-H凝胶的Ca/Si低于水泥,且随着水化的进行呈降低趋势;高炉镍铁渣粉中的Al,在水化过程中会取代部分Si进入C-S-H凝胶中,形成C-A-S-H凝胶.  相似文献   

8.
本文在水泥、粉煤灰和矿粉组成的三元胶凝材料基础上掺入第四元矿物掺合料偏高岭土,利用X射线衍射(XRD)和热重分析(TGA/DTG)定性分析了四元胶凝材料水化产物与氯离子固化能力的关系,并在此基础上利用TGA/DTG和Rietveld外标法定量分析不同形态氯离子固化量。研究表明,掺入偏高岭土能够增加体系早期水化反应速率,促进粉煤灰和矿粉早龄期水化,增加了四元胶凝材料水化AFm相(单硫型水化硫铝酸钙)和C-S-H凝胶含量。同时也增加了体系中铝钙摩尔比,使得单硫型硫铝酸钙(Ms)在碳酸盐存在的条件下更加倾向于转化为半碳型碳铝酸钙(Hc)。氯离子等温吸附结果表明,AFm相含量与氯离子固化能力呈正相关。Rietveld外标法结果表明,掺入偏高岭土后四元体系的氯离子化学固化能力提高,物理吸附能力降低,与三元体系相比,氯离子化学固化量提高了94.16%,物理吸附量降低了7.62%,TGA/DTG定量结果表明Rietveld定量分析具有可行性。  相似文献   

9.
王露  宋军伟  刘数华 《硅酸盐通报》2017,36(7):2197-2202
通过测试宏观抗压强度,同时采用XRD和TG-DTA技术对大掺量矿渣石膏水泥基复合材料的水化特性进行了研究,研究表明:大掺量矿渣石膏水泥基材料早期强度远低于纯水泥,但其强度发展较快,尤其是7~28 d阶段,28 d强度基本达到42.5 MPa水平,90 d龄期强度除SG-4试件均超过纯水泥水平.试件早期强度随着熟料含量的增加而增长,而后期强度并不遵循这一规律,水化后期主要是矿渣粉中活性Al2O3与活性SiO2参与水化反应,提高了体系抗压强度.SG系列水化产物主要为C-S-H凝胶和AFt,而纯水泥试样有大量Ca(OH)2而几乎无AFt存在.熟料含量对早期水化产物数量影响较大,而对水化产物种类及水化后期产物数量影响不大.  相似文献   

10.
研究了大体积混凝土中粉煤灰和矿粉在热养护条件下对水泥早期抗压强度的影响,并通过水化热、XRD以及TGA等技术手段阐述了水化反应过程。结果表明:常温时,粉煤灰和矿粉加入均会大幅度降低早期强度;热养护时,粉煤灰-水泥体系的早期强度仍远低于空白组;但随着矿粉用量的增加和热养护温度的升高,体系早期强度与空白组的差距逐渐减小;50℃养护时,矿粉-水泥体系的早期强度高于空白组。这说明在热激发条件下,粉煤灰的早期火山灰反应仍然有限,但矿粉的早期水化活性显著提高,通过火山灰反应和自水化反应完成水化产物的积累。  相似文献   

11.
钢渣和水泥具有相似的矿物组成,可以作为一种潜在的胶凝材料,然而钢渣掺量较高时并不利于混凝土早期性能的发展。以钢渣质量分数为30%的钢渣水泥基胶凝材料为研究对象,探讨纳米SiO2对其早期性能的影响。主要通过测量流动度、凝结时间和抗压强度评估物理力学性能,并利用微量热分析、X射线衍射(XRD)、差热分析(DSC-TG)等方法对掺有纳米SiO2的钢渣水泥基胶凝材料的水化过程和水化产物进行分析。结果表明,当纳米SiO2掺入的质量分数为3%时,纳米SiO2可充分发挥火山灰活性,消耗大量Ca(OH)2,同时由于纳米SiO2颗粒的结晶成核作用和微集料填充作用,促进了钢渣和水泥的水化,水化初期的放热速率有所提高,从而提高钢渣水泥基胶凝材料的力学性能,28 d的抗压强度提高了14.0%。  相似文献   

12.
管宗甫 《硅酸盐通报》2018,37(3):1083-1087
利用正交实验研究了硅酸盐水泥和其他两种矿物组分复合激发对脱硫石膏-矿渣体系强度的影响,用SEM、XRD分析了水化样品的微观结构.研究结果表明:硅酸盐水泥等多组分复合激发下,脱硫石膏-矿渣体系在水中标准条件养护,3 d抗压强度达17 MPa以上,28 d抗压强度达58 MPa以上.复合激发剂3种组分的优化组合为6:6:5,复合激发剂的用量为脱硫石膏-矿渣体系质量的17%左右.脱硫石膏-矿渣体系在复合激发条件下的水化产物主要是钙矾石和C-S-H.大量钙矾石、石膏晶体相互交叉连生,未水化石膏、矿渣颗粒所填充其间,在C-S-H凝胶的胶结下,形成了较为致密的晶胶搭配构成的微观结构.  相似文献   

13.
徐子芳  张明旭  李金华 《硅酸盐通报》2012,31(2):401-405,415
为了提高低标号水泥基材料的力学性能和耐久性,基于纳米粉体的特殊性能与效应,采用超细硅灰对水泥基材料进行改性。除进行宏观力学性能和耐久性测试之外,运用XRD、TGA-DTA、SEM等方法,研究了超细硅灰改性水泥基材料的相组成、显微结构及微观形貌。结果表明:水泥基复合材料最佳配比为水泥:粉煤灰:超细硅灰:早强减水剂为1:1:0.025:0.015,此时超细硅灰能够很好地促进水泥水化,使水化产物增多,水泥石基体相的显微结构致密,C-S-H凝胶交织成致密的网状结构,结构缺陷显著降低,导致强度明显增大、耐久性显著提高。  相似文献   

14.
The E-modulus of early age cement-based materials, and more importantly, its evolution in time, is one of the most critical material-to-structural design parameters affecting the likelihood of early-age concrete cracking. This paper addresses the problem by means of a multistep micromechanics approach that starts at the nanolevel of the C-S-H matrix, where two types of C-S-H develop in the course of hydration. For the purpose of homogenization, the volume fractions of the different phases are required, which are determined by means of an advanced kinetics model of the four main hydration reactions of ordinary portland cement (OPC). The proposed model predicts with high accuracy the aging elasticity of cement-based materials, with a minimum intrinsic material properties (same for all cement-based materials), and 11 mix-design specific model parameters that can be easily obtained from the cement and concrete suppliers. By way of application, it is shown that the model provides a quantitative means to determine (1) the solid percolation threshold from micromechanics theory, (2) the effect of inclusions on the elastic stiffening curve, and (3) the development of the Poisson's ratio at early ages. The model also suggests the existence of a critical water-to-cement ratio below which the solid phase percolates at the onset of hydration. The development of Poisson's ratio at early ages is found to be characterized by a water-dominated material response as long as the water phase is continuous, and then by a solid-dominated material response beyond the solid percolation threshold. These model-based results are consistent with experimental values for cement paste, mortar, and concrete found in the open literature.  相似文献   

15.
It has long been recognized, in cement chemistry, that two types of calcium-silicate-hydrate (C-S-H) exist in cement-based materials, but less is known about how the two types of C-S-H affect the mechanical properties. By means of nanoindentation tests on nondegraded and calcium leached cement paste, the paper confirms the existence of two types of C-S-H, and investigates the distinct role played by the two phases on the elastic properties of cement-based materials. It is found that (1) high-density C-S-H are mechanically less affected by calcium leaching than low density C-S-H, and (2) the volume fractions occupied by the two phases in the C-S-H matrix are not affected by calcium leaching. The nanoindentation results also provide quantitative evidence, suggesting that the elastic properties of the C-S-H phase are intrinsic material properties that do not depend on mix proportions of cement-based materials. The material properties and volume fractions are used in a novel two-step homogenization model, that predicts the macroscopic elastic properties of cement pastes with high accuracy. Combined with advanced physical chemistry models that allow, for a given w/c ratio, determination of the volume fractions of the two types of C-S-H, the model can be applied to any cement paste, with or without Portlandite, Clinker, and so on. In particular, from an application of the model to decalcified cement pastes, it is shown that that the decalcification of the C-S-H phase is the primary source of the macroscopic elastic modulus degradation, that dominates over the effect of the dissolution of Portlandite in cement-based material systems.  相似文献   

16.
水化硅酸钙(C-S-H)是水泥水化产物中最重要的组成成分,是水泥基材料的主要胶凝相。C-S-H层间水对其纳米结构和力学性能会产生显著影响。利用分子动力学研究了不同湿度C-S-H在结构和力学性能方面的差异。通过原子径向分布函数和浓度分布、弹性常数以及应力应变关系分析了湿度对C-S-H结构和弹性性质以及拉伸、压缩、剪切力学性能和变形性能的影响。结果表明:湿度增加会导致C-S-H中Si、Ca原子近程范围内的O原子集聚增多,还会导致C-S-H层间距离增大,分层更加明显,同时会降低C-S-H的弹性性质;湿度的增加会降低C-S-H拉伸、压缩、剪切力学性能和变形性能;湿度对抗拉与抗剪强度影响较大,对抗压强度影响较小,对拉伸时的变形性能影响最大,对压缩时的变形性能影响最小。  相似文献   

17.
新型无熟料矿渣水泥的试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以高炉矿渣为主要原料,添加Ca(OH)2、CaCO3、可溶性钙盐等辅助材料可在pH值较低的条件下制备出一种不需煅烧的无熟料水泥,该水泥中矿渣掺量可达80%,强度可达国标42.5级水泥要求.Ca(OH)2、CaCO3可以激发矿渣的活性,可溶性钙盐的加入降低了水泥的pH值,进一步激发了矿渣的活性.其主要水化产物为C-S-H凝胶和水化碳铝酸钙.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号