首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
碳化导致混凝土碱度下降,对钢筋混凝土结构的耐久性造成严重危害。本文以Na2SiO3、NaOH和Na2CO3为碱激发剂,探究碱激发剂种类与其中的Na2O当量对单组份碱激发镍渣水泥砂浆抗碳化性能的影响规律。研究表明:当Na2O当量相同时,单组份碱激发镍渣水泥砂浆的抗碳化性能以NaOH单掺组试件最优,Na2SiO3单掺组试件最劣;Na2CO3取代部分Na2SiO3后可提升水泥砂浆试件抗碳化能力,而取代部分NaOH后,水泥砂浆试件抗碳化能力则与Na2O当量有关;随着Na2O当量的增加,Na2SiO3单掺组与Na2SiO3&Na2CO3(3∶1)复掺组试件...  相似文献   

2.
电石渣作为一种Ca(OH)2含量较高的工业副产品,可协同Na2CO3加速碱激发复合胶凝材料的水化过程。本文采用粉煤灰和矿粉作为复合胶凝材料的前驱体,探究不同电石渣(CCR)和Na2CO3质量比对复合胶凝材料的孔溶液pH值和力学性能影响。此外,通过水化热、X射线衍射、热重分析和扫描电子显微镜,探讨了CCR和Na2CO3协同激发作用对复合胶凝材料的水化过程和微观结构的影响。研究结果表明,随着CCR掺量的增加,复合胶凝材料的孔溶液pH值和力学性能均呈先增加后递减的趋势。当CCR和Na2CO3的掺量分别为6%和9%(质量分数)时,碱激发复合胶凝材料的3 d孔溶液pH值和28 d抗压强度分别达到最大值12.95和26.8 MPa。微观结构分析表明,在CCR和Na2CO3的协同激发作用下,碱激发复合材料能够生成更多的水化硅(铝)酸钙(C-(A)-S-H)凝胶,...  相似文献   

3.
采用挤压-滚圆法制备Na2CO3基CO2吸附剂微球颗粒,在自行设计的CO2吸收系统中对制备的样品进行脱碳性能测试。结合相关表征测试,探明不同载体、不同负载量的Na2CO3基吸附剂的微观结构、脱碳性能以及机械性能的变化规律和内在原因。研究表明:不同载体的Na2CO3基吸附剂颗粒脱碳性能存在明显差异,其中氧化铝负载的吸附剂(Na2CO3/Al2O3)的脱碳性能最好,可达1.14mmol/g。铝酸钙水泥负载的吸附剂(Na2CO3/CA)机械性能较好,但其脱碳性能最差。结合吸附剂脱碳和机械性能的综合考量,Na2CO3/Al2O3是最为合适的CO2吸附剂,并进一步研究不同Na2CO3负载量的影响。研究发现随着Na2CO3负载量的变化,吸附剂的微观结构、脱碳性能以及机械性能都存在明显的差异。虽然60%负载量的Na2CO3/Al2O3吸附剂颗粒的机械性能和脱碳效果较好,但其成球度较差,影响其实际应用。质量分数40%负载量的Na2CO3/Al2O3吸附剂颗粒具有良好的脱碳性能、机械性能以及成球度,CO2脱除量为1.36mmol/g。总体而言,利用挤压-滚圆法制备的Na2CO3基吸附剂颗粒具有良好的流动特性、脱碳性能和机械性能,适用于电厂烟气中的CO2脱除。  相似文献   

4.
师伟  龚泽相  刘开强  马疆  王军  代红  邓林 《硅酸盐通报》2023,(10):3695-3702
针对CO2易腐蚀硅酸盐水泥石、破坏水泥石结构完整性、诱发层间封隔失效等问题,本文利用矿渣改性铝酸钙水泥,研究了铝酸钙水泥-矿渣体系在60、80、100、120℃和纯CO2条件下的抗压强度变化规律,并采用X射线衍射仪、热重分析仪和扫描电子显微镜测试了CO2腐蚀对铝酸钙水泥-矿渣体系水化产物及微观结构的影响。结果表明:与纯铝酸钙水泥石相比,矿渣使铝酸钙水泥石水化产物转变为C2ASH8,大幅提高了水泥石早期抗压强度。当铝酸钙水泥与矿渣质量比为5∶5时,60℃养护14 d的铝酸钙水泥抗压强度提高了215.4%。经CO2腐蚀后,铝酸钙水泥-矿渣体系水化产物由C2ASH8转变为C2AS,并有CaCO3生成,腐蚀层的致密程度增加,相同温度下水泥石的抗压强度随腐蚀时间增加而增大。  相似文献   

5.
本文使用正交试验法,研究了富镁镍渣与粉煤灰的质量比、复合碱激发剂(水玻璃-Na2CO3)掺量及水胶比对富镁镍渣-粉煤灰基地质聚合物力学性能的影响,通过XRD、SEM、EDS及TG等测试方法对水化产物进行表征。结果表明,最优试样28 d抗压强度可达37.50 MPa。XRD结果显示,7 d与28 d的水化产物中含有水化硅酸钙凝胶,结合SEM、EDS分析可知,产物中还有菱沸石(N-A-S-H)与钠镁硅铝酸盐(N-M-A-S)无定形凝胶相,这些凝胶相是地质聚合物强度增加的主要原因。  相似文献   

6.
以B2O3为助催化剂,采用研磨混合法改性Na2CO3催化剂,在固定床反应器中催化甲醇脱氢制备无水甲醛,考察催化剂的组成和反应条件等对催化反应的影响,采用XRD、TG-DTG、N2吸附-脱附、SEM和CO2-TPD等对催化剂进行表征。结果表明,以B2O3为助催化剂采用机械研磨混合法改性的Na2CO3催化剂,增加了催化剂的比表面积,在(10~30) nm增加了大量的孔道,平均孔径达18.44 nm,比表面积为1.65 m2·g-1,且B2O3分布均匀,改性后的催化剂碱性降低,在催化甲醇脱氢制备无水甲醛的反应中,催化活性明显高于Na2CO3催化剂,表明B2O3改性Na2CO3催化剂能提高甲醇转化率和甲醛选择性。在B2O3/Na2CO3催化剂中B2O3质量分数为30%、甲醇进料质量分数为26%、反应温度为650 ℃和甲醇重时空速为2.94 h-1条件下,甲醇转化率达59.97%,甲醛选择性达83.28%。  相似文献   

7.
以Na2CO3为活性组分、泡沫炭(CF)为载体,本文借助等体积浸渍法制备了Na2CO3/CF非均相固体碱催化剂,通过SEM、SEM-EDS、FTIR、XRD、BET对其结构性能进行分析表征,结果显示:Na2CO3/CF的比表面积为182m2/g,负载的Na2CO3以细小颗粒的形式均匀分布于CF泡壁表面,平均粒径<350nm。以菜籽油-甲醇体系为对象,分析了Na2CO3/CF的催化活性及重复利用性,并对酯交换反应的工艺条件进行优化,结果显示,在Na2CO3/CF用量为油重10%、反应时间180min、醇油物质的量比为27∶1、反应温度65℃的条件下,反应转化率高达97.80%,该催化剂重复利用5次,转化率仍可达94.48%。研究结果对开发以强碱弱酸盐为活性中心的碳基固体碱高效催化剂提供了新思路。  相似文献   

8.
采用共沉淀法制备Cu/ZnO/Al2O3催化剂,考察以Na2CO3、NaHCO3、NaOH和KOH为沉淀剂对催化剂结构及性能的影响,并采用XRD和固定床反应器对催化剂结构及性能进行表征。结果发现,催化剂前驱体受沉淀剂种类、反应液pH值、碱量的影响较大,产物的产量、失重率及结构具有明显的变化。随着一元碱强度的增加,反应产物低温发生分解生成CuO,催化剂产量及焙烧失重率受低温分解的影响较大,但催化剂结晶度提高,性能没有明显的变化,CO2转化率在17%~18%之间,甲醇选择性为35%;而采用二元碱Na2CO3,随着碱量的增加,焙烧失重率先减小后增大,催化剂性能明显低于一元碱制备的催化剂,CO2转化率和甲醇选择性分别降至7.5%和13%。提高一元碱的含量,催化剂前驱体中的两性化合物将部分溶解,虽然催化剂活性变化不大,但甲醇选择性从35%降至31%。  相似文献   

9.
梁咏宁  陈李全  张迎  林旭健  季韬 《硅酸盐通报》2022,41(10):3556-3566
以Na2SO4和MgSO4溶液为侵蚀介质,研究了在浸泡环境下CaO-Na2CO3激发矿渣(CNS)砂浆和普通硅酸盐水泥(OPC)砂浆经硫酸盐侵蚀前后的抗折强度、抗压强度及不同深度处的SO2-4浓度,结合X射线衍射(XRD)、扫描电子显微镜(SEM)、压汞法(MIP)等测试方法分析了CNS砂浆和OPC砂浆的侵蚀产物及孔结构,对比讨论了Na2SO4和MgSO4对CNS砂浆和OPC砂浆的侵蚀机理。结果表明:CNS砂浆的水化产物主要是低Ca/Si比的水化硅铝酸钙(C-A-S-H),不存在氢氧化钙,碳酸钙的填充作用使其孔结构优于OPC砂浆,并且在相同侵蚀环境下,CNS砂浆的抗硫酸盐侵蚀能力大于OPC砂浆;MgSO4侵蚀环境下CNS砂浆的侵蚀产物主要是水镁石(腐蚀后期会带动试件表面的砂浆一起剥落)和无黏聚力的水化硅铝酸镁(M-A-S-H);与Na2SO4相比,MgSO4对CNS砂浆的腐蚀性更强。  相似文献   

10.
卢珺  康春阳  李秋 《硅酸盐通报》2017,36(10):3412-3416
以粉煤灰、矿渣为原料,研究了偏硅酸纳激发胶凝材料的力学性能及工作性能,通过XRD和SEM对水化产物进行表征,并采用量热试验对水化历程进行分析.结果表明:对于粉煤灰-矿渣体系,采用偏硅酸钠作激发剂时,碱当量为8%时,砂浆抗压强度最高;随着激发剂掺量的增加,砂浆流动度增加,凝结时间缩短,砂浆收缩率降低;体系主要水化产物为C-S-H凝胶,且随着碱当量的提高,粉煤灰和矿渣的反应程度变大,水化产物中凝胶的量增加.  相似文献   

11.
Strength, pore structure and permeability of alkali-activated slag mortars   总被引:3,自引:0,他引:3  
This paper deals with the strength development, pore structure development, rapid chloride permeability and water permeability of alkali-activated slag mortars activated by 6% (by mass of Na2O) NaOH, Na2CO3 and Na2SiO3. The Na2SiO3-activated slag mortars exhibited the highest strength at both early and later ages, even much higher than a typical commercial Type III portland cement. NaOH-activated slag mortars exhibited the lowest strength. The pore structure measurements were consistent with strength results. Four common strength-porosity equations: Balshin's, Ryshkevitch's, Schiller's, and Hasselmann's equations, fit the experimental results from alkali-activated slag mortars with sufficient efficiency; of which Hasselmann's equation fit best. The charge passed through the mortar specimens in the rapid chloride ion permeability test appeared to be dependent more on the chemistry of pore solution than on the pore structure of the mortars. Limited results from water permeability testing appeared to be consistent with strength and pore structure measurements.  相似文献   

12.
采用浸渍法制备了固体碱催化剂硅酸钠/二氧化锆(Na2SiO3/ZrO2),并用其催化大豆油制备生物柴油。考察了催化剂焙烧温度、催化剂焙烧时间、硅与锆物质的量比、醇油物质的量比和催化剂用量等因素对生物柴油产率的影响。X射线衍射(XRD)表征结果显示,引入硅酸钠可调变催化剂中二氧化锆的晶相组成。对催化剂的性能测试表明,当催化剂焙烧温度为600 ℃、催化剂焙烧时间为3 h、硅与锆物质的量比为4、醇油物质的量比为7、催化剂用量(催化剂占大豆油的质量)为3%时,生物柴油的产率最高为92.5%。  相似文献   

13.
董伟  陈晓平  吴烨 《化工学报》2014,65(9):3617-3625
钠基固体吸收剂脱除燃煤烟气CO2技术具有反应温度低、能耗低等优点,日益受到学术界的关注。该技术的主要不足是吸收剂的活性成分碳酸钠与CO2的反应(碳酸化反应)活性较低。针对这一问题,本文旨在研制一种新型改性钠基固体吸收剂,采用活性氧化铝作为载体、TiO2作为掺杂剂进行改性,利用热重分析装置、XRD、SEM和氮吸附仪研究钠基固体吸收剂的CO2捕捉性能。结果表明:掺杂TiO2后,钠基固体吸收剂与CO2的反应速率加快,CO2捕捉量增加;反应前后除TiO2外无其他含Ti化合物生成;碳酸化反应产物为NaHCO3和Na5H3(CO34;然而TiO2掺杂过多会堵塞吸收剂的微观孔道,不利于甚至阻碍碳酸化反应的进行,因此,TiO2的掺杂量应控制在一定的范围内。  相似文献   

14.
In this paper, a low-cost and environmental-friendly leaching agent citric acid (C6H8O7) was used to treat the sediment of Dianchi Lake (SDL) to synthesize lithium silicate (Li4SiO4) based CO2 sorbent. The results were compared with that treated with strong acid. Moreover, the effects of preparation conditions, sorption conditions and desorption conditions on the CO2 sorption performance of prepared Li4SiO4 were systematically studied. Under optimal conditions, the Li4SiO4 sorbent was successfully synthesized and its CO2 sorption capacity reached 31.37% (mass), which is much higher than that synthesized from SDL treated with strong acid. It is speculated that the presence of some elements after C6H8O7 treatment may promote the sorption of synthetic Li4SiO4 to CO2. In addition, after doping with K2CO3, the CO2 uptake increases from the original 12.02% and 22.12% to 23.96% and 32.41% (mass) under the 20% and 50% CO2 partial pressure, respectively. More importantly, after doping K2CO3, the synthesized Li4SiO4 has a high cyclic stability under the low CO2 partial pressure.  相似文献   

15.
卿三成  马丽萍  杨静  敖冉  殷霞  穆刘森 《硅酸盐通报》2021,40(12):4052-4060
以磷石膏(PG)、热焖钢渣(HBSS)、硅酸盐水泥和铝酸盐水泥(AC)为主原料,水玻璃为碱激发剂制备复合胶凝材料。在养护龄期0~28 d内,测试了该材料的抗压强度与膨胀率,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)和比表面积及孔隙率(BET)测试,分析了磷石膏、热焖钢渣和铝酸盐水泥间的水化协同机理。结果表明,过0.300 mm筛孔的钢渣微粉同时具备良好的骨架填充作用和水化胶凝性能。水化过程中水玻璃可提高钢渣表面玻璃体网络结构的溶解速率,促使钢渣与铝酸盐水泥生成C-A-S-H。同时,铝酸盐水泥与磷石膏反应生成的钙矾石可抑制C-A-H水化过程中的相变收缩。此外,若铝酸盐水泥比例过高,大量钙矾石和C-A-H会迅速生成并覆盖于钢渣表面,阻碍Na2SiO3促进钢渣玻璃网络结构的溶解。本文可为磷石膏和钢渣协同资源化利用提供理论依据。  相似文献   

16.
采用分步浸渍法制备了碱/碱土金属修饰Ni基催化剂Ni-M/Al2O3 (M=K2CO3, Na2CO3, MgO, CaO)。探究了碱/碱土金属的添加对改性Ni基催化剂CO2吸附和甲烷化性能的影响。研究发现,碱/碱土金属的添加提高了Ni/Al2O3催化剂表面的碱性活性位点密度,强化了其CO2吸附性能。碱/碱土金属类型影响Ni-M/Al2O3催化剂碱性活性位点的分布、NiO物相的转化及Ni的分散度,进而影响其甲烷化性能。MgO添加使NiO物相转化为与载体呈强相互作用的β型和γ型NiO,降低了催化剂表面的强碱性活性位点比例,有利于CO2吸附活化。Ni-MgO/Al2O3的CO2吸附容量最高为0.68mmolCO2/g,其CO2转化率和CH4选择性分别高达58.4%和95.4%,其在烟气CO2捕集与原位甲烷化中极具应用前景。  相似文献   

17.
An experimental study of thermal de-NOx using NH3 as reductant in O2/CO2 atmosphere with the effect of SO2 and different additives was performed in a drop tube furnace. Results show that the optimum te...  相似文献   

18.
柴达木盐湖中具有丰富的盐湖离子,对其中的一个四元体系水盐相图开展研究,采用等温溶解平衡法开展了298.15 K时四元体系NaCl+NaBO2+Na2CO3+H2O相平衡研究,测定了体系平衡液相组成及密度和折光率,绘制了四元体系NaCl+NaBO2+Na2CO3+H2O 298.15 K的相图及相应的物化性质图。研究发现NaCl+NaBO2+Na2CO3+H2O四元体系298.15 K 时包含2个共饱点(E1E2)、5条溶解度曲线(AE1BE1CE2DE2E1E2)、4个结晶区(NaCl、NaBO2·4H2O、Na2CO3·7H2O、NaCl·NaBO2·2H2O)。其中三元体系NaCl+NaBO2+H2O在298.15 K下产生了复盐NaCl·NaBO2·2H2O,通过研究发现该四元体系NaCl+NaBO2+Na2CO3+H2O在298.15 K下也具有NaCl·NaBO2·2H2O复盐区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号