首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
对硝基苯酚在各个领域中都有着重要的作用,但由于其本身属于酚类,具有较强的毒性,使用不当会造成严重的污染。本研究以花生壳为原料,采用热解法在400、500、600℃下制备花生壳生物炭,研究不同操作条件下花生壳生物炭对废水中对硝基苯酚的吸附能力。研究结果表明,在不同热解温度下的花生壳生物炭对对硝基苯酚溶液的吸附能力随热解温度的升高而增强。生物质炭吸附能力随对硝基酚的投加量增加而降低,随着花生壳生物质炭的投加量的增加而增加。600℃下所制得的生物炭对浓度为10 mg/L的对硝基苯酚溶液的吸附能力最强,且在中性环境下,去除率可以达到100%。  相似文献   

2.
脱水污泥-松木共热解生物炭的制备及吸附性能   总被引:2,自引:1,他引:2  
以脱水污泥(含水率80%)和松木的混合物为原料共热解制备生物炭。研究了松木掺混比、热解温度对生物炭产率和BET比表面积(SBET)的影响,采用元素分析、工业分析和扫描电镜比较了单独热解及共热解生物炭的元素组成和表面形貌。结果表明,生物炭产率随着松木掺混比的增加而提高,随着热解温度的升高而下降。2种原料共热解存在明显的协同效果:松木提高了生物炭的碳元素含量,污泥的水分具有一定的活化作用,生物炭表面粗糙程度增加、SBET扩大。当松木掺混比为60%、热解温度为750℃时,生物炭SBET达到最高的213.4 m2/g。此外,生物炭对水中苯酚的吸附符合准二级动力学,等温吸附过程能用Freundlich模型描述。  相似文献   

3.
王昱璇  王红  卢平 《化工进展》2019,38(11):5142-5150
在300~700℃下制备了水葫芦炭和玉米秸秆炭,研究了生物质种类、热解温度、溶液初始pH和Zn(Ⅱ)初始浓度对两种生物炭吸附溶液中Zn(Ⅱ)的影响,并结合吸附过程曲线拟合获得了吸附动力学模型。结果表明:随着热解温度的升高,生物炭理化特性发生显著变化,生物炭的挥发分、氧含量、氢含量以及O/C和H/C显著降低,而固定碳、灰分和热值显著升高,生物炭的比表面积、总孔容、微孔容、pH以及KCl等盐类物质均得到了显著增加。随着溶液初始pH增加,生物炭对Zn(Ⅱ)的吸附能力呈现先快速增加然后逐步趋于稳定或稍有下降的趋势,不同生物炭的最大平衡吸附量出现在pH=4~6之间。Zn(Ⅱ)初始浓度<30mg/L时,生物炭对Zn(Ⅱ)平衡吸附量随溶液Zn(Ⅱ)初始浓度的增加呈线性快速增长,而当Zn(Ⅱ)初始浓度>30mg/L,其平衡吸附量增长趋势变缓。在相同Zn(Ⅱ)初始浓度下,随着热解温度的提高,生物炭对溶液中Zn(Ⅱ)平衡吸附量逐渐提高,且在同一热解温度下制备的水葫芦炭对Zn(Ⅱ)的平衡吸附量显著高于玉米秸秆炭。两种生物炭对溶液Zn(Ⅱ)的吸附符合Lagergren准二级动力学模型,其吸附过程均受化学吸附控制,水葫芦炭和玉米秸秆炭对Zn(Ⅱ)吸附机制主要包括含氧官能团的络合作用和无机盐离子的沉淀作用。  相似文献   

4.
采用自制的生物质固定床热解装置研究了不同热解终温对花生壳炭化产物的影响。结果表明:随着热解终温的增加,生物炭质量和能源产率总体上呈现降低趋势,热解气产率呈现上升趋势(热值显著提高),其中液体质量产率在550℃时达到最大值;热解终温的增加使花生壳生物炭中固定碳、灰分不断提高,C元素不断提高,H元素与O元素含量则不断降低,生物炭的化学和生物稳定性提高;生物炭的热值在500℃时达到最大值,为24.346MJ/kg。生物炭的燃烧过程包括水分蒸发、固定碳及挥发分燃烧和燃尽等3阶段,其燃烧起始时间明显晚于花生壳,不同温度制备的生物炭的综合燃烧特性指数(S)从大到小的顺序依次为:C500 > C350 > C600 > C400 > C450 > C550;热解终温为550℃时,生物炭的比表面积、微孔表面积、总孔容积和微孔容积均最大,分别为50.58m2/g、29.56m2/g、0.01543cm3/g和0.01111cm3/g,与活性炭相比仍有较大差距,需要进一步处理。  相似文献   

5.
以稻壳、竹子和杉木屑为原料,分别在不同热解温度下热解制备生物炭(DBC、ZBC和MBC)。采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线能谱(EDS)和X射线衍射(XRD)表征其理化性质,并通过批量吸附实验研究生物炭对U(Ⅵ)的吸附特性与机理。结果表明:随着热解温度升高,3种生物炭pH值和灰分增加,产率下降,且ZBC与DBC表面更加粗糙,孔状形貌更加明显,芳香结构趋于完善,含氧官能团减少,无机元素占比增加,碳纤维结晶度降低;准二级吸附动力学模型能更好地拟合3种生物炭吸附U(Ⅵ)的过程(R_2~20.96),在25℃、pH值4、固液比为1∶1(g∶L)的条件下3 h可达到吸附平衡;3种生物炭的吸附等温线拟合更符合Langmuir模型,以化学吸附为主,ZBC700对U(Ⅵ)的理论最大吸附量为18.55 mg/g;随着热解温度的升高,ZBC和DBC吸附U(Ⅵ)的能力增强,阳离子-π和离子交换作用贡献增加。MBC吸附U(Ⅵ)的能力与热解温度关系不明显,相同热解温度,ZBC和DBC的吸附量高于MBC。  相似文献   

6.
以稻壳、竹子和杉木屑为原料,分别在不同热解温度下热解制备生物炭(DBC、ZBC和MBC)。采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线能谱(EDS)和X射线衍射(XRD)表征其理化性质,并通过批量吸附实验研究生物炭对U(VI)的吸附特性与机理。结果表明:随着热解温度升高,3种生物炭pH值和灰分增加,产率下降,且ZBC与DBC表面更加粗糙,孔状形貌更加明显,芳香结构趋于完善,含氧官能团减少,无机元素占比增加,碳纤维结晶度降低;准二级吸附动力学模型能更好地拟合3种生物炭吸附U(VI)的过程(R22>0.96),在25℃、pH值4、固液比为1:1(g:L)的条件下3 h可达到吸附平衡;3种生物炭的吸附等温线拟合更符合Langmuir模型,以化学吸附为主,ZBC700对U(VI)的理论最大吸附量为18.55 mg/g;随着热解温度的升高,ZBC和DBC吸附U(VI)的能力增强,阳离子-π和离子交换作用贡献增加。MBC吸附U(VI)的能力与热解温度关系不明显,相同热解温度,ZBC和DBC的吸附量高于MBC。  相似文献   

7.
分别以香蕉秸秆(BS)、木薯秸秆(CS)为原料,采用限氧热解法在不同热解温度下制备生物炭,采用元素分析、Boehm滴定、BET、FTIR、XRD等方法分析了生物炭的基本特性,研究了生物炭对Cd~(2+)的吸附特性和作用机制。结果表明,热解温度能显著影响生物炭的产率、灰分、pH、孔径结构以及元素分布等性质;生物炭吸附过程符合准二级动力学;生物炭对Cd~(2+)的吸附作用机制主要表现为络合作用和沉淀作用,K~+、Na~+、Mg~(2+)、Ca~(2+)共存会影响Cd~(2+)的吸附,且热解温度越低,影响作用越大。  相似文献   

8.
以玉米秸秆、枫杨树枝、花生壳为生物质材料,分别在450、550、650℃下,对3种生物质材料进行厌氧热解制备了9种生物炭,对溶液中的Cd2+进行吸附试验,研究了pH、生物炭投加量、吸附时间和Cd2+初始质量浓度对Cd2+吸附效果的影响。结果表明,吸附过程与Langmuir、Freundlich和准一级动力学方程拟合的相关性较好。pH对吸附的影响较大,吸附率与生物炭的投加量呈正比,650℃制备的3种生物炭的吸附能力更强,花生壳生物炭对溶液中的Cd2+具有更好的吸附能力。  相似文献   

9.
为水葫芦生物炭作为土壤改良剂提供依据,以水葫芦生物质为原料,在200~400℃之间进行炭化制备成水葫芦生物炭,探讨热解温度对水葫芦生物炭的理化特性和养分含量的影响。结果表明:产率随着热解温度的升高而降低,pH随热解温度的升高而升高,全氮随着热解温度的升高先升高后降,全磷、全钾和速效钾随着热解温度的升高而增加,水解性氮和有效磷随着热解温度的升高而降低。较高的热解温度在一定程度上富集了NPK养分,但降低了NP的有效性。水葫芦生物炭呈碱性且含有一定的营养元素,可作为一种较好的酸性土壤改良剂。  相似文献   

10.
由我国典型山地城市重庆的某污水厂污泥热解制备生物炭。使用X射线衍射、X射线荧光和傅里叶变换红外光谱等对产物进行了物性测定,评价了热解温度对生物炭吸附Cu(Ⅱ)、碳保留率(YC)、固定碳产率(YFC)和热稳定性的影响。结果表明,热解温度低于300℃时,生物炭对Cu(Ⅱ)的吸附能力差异较小;高于300℃时,随热解温度升高,生物炭对Cu(Ⅱ)的吸附能力降低。由于生物炭中的灰分以SiO2为主,并不影响生物炭对Cu(Ⅱ)的吸附,其吸附机理主要受含氧官能团和比表面积的制约。此外,YFC比单独使用YC或热稳定性更能综合衡量生物炭固碳作用。热解温度为300℃时,生物炭的YFC值最大,固碳效果最佳。因此,从对Cu(Ⅱ)的吸附能力和固碳效果两方面考虑,山地城市污泥制备生物炭的热解温度为300℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号