共查询到20条相似文献,搜索用时 75 毫秒
1.
2.
3.
先通过硅酸钠水解在磁性Fe3O4纳米粒子表面包覆二氧化硅,制得磁性硅粒子(Fe3O4@SiO2);然后再通过碳二亚胺活化接枝法在Fe3O4@SiO2纳米粒子表面接枝高脱乙酰度羧甲基化壳聚糖(CMC),制备了一种新型磁性纳米吸附剂(Fe3O4@SiO2@CMC)。通过透射电镜(TEM)、红外光谱(IR)、X射线衍射(XRD)以及振动样品磁强计(VSM)对其进行了表征,着重研究了其对水中Cr(Ⅵ)离子的吸附性能。结果表明:溶液的pH值能显著影响吸附剂对Cr(Ⅵ)离子的吸附效果,pH值为2时效果最佳。结合相应pH值下Cr(Ⅵ)的形态分布,探讨了这种新型材料对Cr(Ⅵ)的吸附机理。结果表明:其吸附机理及吸附容量与Cr(Ⅵ)的离子形式有关,吸附过程以离子交换与静电引力为主。吸附平衡数据分别采用了Langmuir和Freundlich方程进行拟合。结果表明,等温吸附数据更符合Langmuir模型,T=298 K、pH=2、V=5 mL时,吸附剂的饱和吸附容量qm=86.96 mg/g,吸附常数为0.0174 L/mg。 相似文献
4.
5.
新型纤维素螯合吸附剂对Cr(Ⅵ)的吸附研究 总被引:1,自引:0,他引:1
研究了半皂化偕胺肟基纤维素吸附剂AOSC对Cr(Ⅵ)的吸附,探讨了各种因素对吸附效果的影响。结果表明,当Cr(Ⅵ)的初始质量浓度为100mg/L时,最佳的吸附条件为:吸附液pH值为2,吸附时间2h,吸附温度35℃。在此条件下AOSC的吸附容量和Cr(Ⅵ)去除率分别达到49.8mg/g和99.5%。吸附性能对比实验表明,AOSC对Cr(Ⅵ)的吸附效果优于纤维素基离子交换剂和偕胺肟基螯合吸附剂。 相似文献
6.
采用P 25 TiO2作为光催化剂,研究了废水的pH值、Cr(VI)的初始浓度、气氛及有机物等因素对含铬废水中Cr(VI)去解率的影响。结果表明,在pH值为3.0时,光催化反应速率最大;反应气氛对该体系中Cr(VI)的光催化还原无明显影响;苯酚、葡萄糖等有机物的存在能有效地促进Cr(VI)的光催化还原,当加入与Cr(VI)等物质的量的苯酚或葡萄糖时,150 mL反应液[Cr(VI)浓度为0.96 mmol/L],0.15 g光催化剂,经12 W紫外灯照射反应120 m in,Cr(VI)完全被去除,相对于在反应体系中不加有机物时,Cr(VI)光催化还原效率提高了近100%;Cr(VI)的光催化还原符合L-H动力学规律。 相似文献
7.
采用磷酸对核桃壳进行改性,以提高核桃壳对Cr(Ⅵ)的吸附效果.实验考察了吸附时间、含Cr(Ⅵ)水样的初始浓度、吸附剂投加量以及pH等因素对改性核桃壳吸附Cr(Ⅵ)效果的影响.实验结果表明:含Cr(Ⅵ)水样初始浓度为20 mg/L,体积为50 mL时,吸附剂投加量为0.7 g,吸附时间为2 h,吸附效果最佳,此时去除率为... 相似文献
8.
二氧化钛具有较高的光稳定性和反应活性,可以用于光催化还原去除水中的重金属离子,本文以含有Cr(Ⅵ)的有机废水为研究体系,分别考察了环糊精、pH值、反应物初始浓度、催化剂用量等对光催化还原反应的影响。 相似文献
9.
10.
11.
采用混凝-Fenton法处理盘锦油田含油废水,分析PAC用量、PAM用量、pH值、H_2O_2的投加量、FeSO_4·7H2O的投加量、反应温度和反应时间等各因素对COD_(Cr)去除效果的影响,并确定最佳的处理条件。结果表明,混凝试验中PAC的投加量为200 mg/L和PAM的投加量为0.6 mg/L时效果最好;Fenton反应的最佳条件为:pH值为4,H_2O_2投加量为37.8 mmol/L,FeSO_4·7H_2O投加量为3.78 mmol/L,反应温度为75℃,时间为30 min,此时Fenton反应进行最彻底,含油废水COD_(Cr)去除率最高。 相似文献
12.
Due to rapid industrialisation, the presence of heavy metals in water and wastewater is a matter of environmental concern. Though some of the metals are essential for our system but if present beyond their threshold limit value (TLV), they are harmful and their treatment prior to disposal becomes inevitable. The present communication has been addressed to the removal of Cr(VI) from aqueous solutions by nanoparticles of iron. Nanoparticles of iron were prepared by sol–gel method. The characterisation of the nanoparticles was carried out by XRD and TEM analysis. Batch experiments were adopted for the adsorption of Cr(VI) from its solutions. The effect of different important parameters such as contact time and initial concentration, pH, adsorbent dose, and temperature on removal of chromium was studied. The removal of chromium increased from 88. 5% to 99.05% by decreasing its initial concentration from 15 to 5 mg L?1 at optimum conditions. Removal of Cr(VI) was found to be highly pH dependent and a maximum removal (100%) was obtained at pH 2.0. The process of removal was governed by first and pseudo‐second‐order kinetic equations and their rate constants were determined. The process of removal was also governed by intraparticle diffusion. Values of the thermodynamic parameters viz. ΔG°, ΔH°, and ΔS° at different temperatures were determined. The data generated in this study can be used to design treatment plants for chromium rich industrial effluents. Adsorption results indicate that nanoiron particles can be effective for the removal of chromium from aqueous solutions. 相似文献
13.
Dhirendra B. Singh Dinesh C. Rupainwar Gur Prasad 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1992,53(2):127-131
The efficacy of feldspar in the removal of Cr(VI) from representative waste-water from a plating industry has been investigated in a completely mixed batch reactor at different concentrations, rate of agitation and particle size. The data obey the Langmuir isotherm for the present system and the process of uptake follows first-order kinetics. The maximum removal (91%) was observed at 40°C and pH 2.5 with initial concentration of 19.23 μmol dm?3 Cr(VI) and 40 g dm?3 feldspar. The process involves both film and pore diffusion to different extents. Column studies have also been carried out using a certain concentration of waste-water. More than 92% recovery has been achieved and the column can be used for 10 cycles before regeneration. The present technique seems to be quite attractive. 相似文献
14.
María J Rivero Oscar Primo M Inmaculada Ortiz 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2004,79(8):822-829
This work reports the viability and modelling of the removal of Cr(VI) from polluted groundwaters by means of ion exchange using the resin Lewatit MP‐64. Feed groundwaters that contained Cr(VI) at an average concentration of 2431 mg dm?3 and 1187 mg dm?3 of chloride and 1735 mg dm?3 of sulfate as main anions were acidified to a pH of 2.0 prior to the removal process. Dynamic experiments were carried out in a fixed bed column with feed waters at flow rates in the range of 2.78 × 10?7 m3 s?1 to 5.55 × 10?7 m3 s?1. Regeneration was achieved with NaOH (2 mol dm?3). From the experimental results, the equilibrium of the ion exchange reaction was successfully modelled, obtaining an equilibrium constant (K′AB) = 44.90. Finally, a mass balance that included mass transfer resistances in the liquid and solid phases was developed and from the comparison between simulated and experimental data the value of the effective intraparticle diffusivity (Ds) was determined as 1.43 × 10?12 m2 s?1. Copyright © 2004 Society of Chemical Industry 相似文献
15.
C Selomulya V Meeyoo R Amal 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1999,74(2):111-122
The removal mechanisms of Cr(VI) from water using different types of activated carbons, produced from coconut shell, wood and dust coal, were investigated in this project. Different types of activated carbons have different surface characteristics. The coconut shell and dust coal activated carbons have protonated hydroxyl groups on the surface (H‐type carbons), while the surface of the wood‐based activated carbon has ionised hydroxyl groups (L‐type carbons). The adsorption kinetics of chromium onto the activated carbons at pH values ranging from 2 to 6 were investigated. It was found that the optimum pH to remove total chromium was 2 for wood‐based activated carbon, while for coconut shell and dust coal activated carbons, the optimum pH was around 3–4. The difference in the optimum pH for different activated carbons to remove Cr(VI) from water can be explained by the different surface characteristics and capacity of the activated carbons to reduce Cr(VI) to Cr(III). © 1999 Society of Chemical Industry 相似文献
16.
Cr(VI) removal using nanoparticulated zerovalent iron is enhanced under visible light in comparison with the dark process. Using an Fe:Cr(VI) molar ratio (MR) of 1, 77% removal was obtained after two hours under irradiation, compared with 60% in dark conditions; use of MR 2 allowed almost total Cr(VI) removal. Experiments with selected filters indicated that active wavelengths are above 555 nm. The proposed mechanism involves a heterogeneous photocatalytic process promoted by the iron oxides present as an external layer of the nanoparticles acting as semiconductors after excitation with light, overcoming the passivation of the material taking place in the dark. 相似文献
17.
Gang Wang Qing Chang Mingyue Zhang Xiaoting Han 《Reactive and Functional Polymers》2013,73(11):1439-1446
A novel flocculant with the capacities of reduction and chelation was prepared in this paper. The flocculant, called polyethyleneimine–sodium xanthogenate (PEX), was synthesized by modifying polyethyleneimine with carbon disulfide and sodium hydroxide. The effect of pH on the removal of Cr(III) and Cr(VI) from aqueous solution with PEX was investigated by using flocculation experiments. The results showed that in the single-ion system (only including Cr(III) or Cr(VI) in the solution), the final Cr(III) decreased with the increase in pH from 2.0 to 10.0, while the final Cr(VI) increased at first and then decreased with the increase in this pH range studied. The removal of Cr(III) was not desirable at pH lower than 7.0, whereas the final Cr(VI) concentration reached the minimum value of 0.145 mg/L at pH 2.0. In the mixture system of Cr(III) and Cr(VI), the variation tendency for the removal of Cr(III) or Cr(VI) was very similar to that obtained in the single-ion system. The oxidation–reduction potential, zeta potential, and final pH in the supernatant were also measured to analyze the above results. Furthermore, FTIR spectra revealed that dithiocarboxylic acid groups on the macromolecular chains of PEX played a major role in the Cr(VI) reduction and Cr(III) chelation. 相似文献
18.
19.
Ahmad B. Albadarin Zheyu Yang Chirangano Mangwandi Yoann Glocheux Gavin Walker M.N.M. Ahmad 《Chemical Engineering Research and Design》2014
Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex. 相似文献
20.
Wanyue Liu Xiaoqin Liu Jinming Chang Feng Jiang Shishi Pang Hejun Gao Yunwen Liao Sheng Yu 《Frontiers of Chemical Science and Engineering》2021,15(5):1185
The magnetic nitrogen-doped carbon (MNC) was prepared from polypyrrole by a simple high temperature calcination process in this paper. The structure and properties of MNC were analyzed by scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, Brunner-Emmet-Teller, vibrating sample magnetometer, and X-ray photoelectron spectroscopy. The capacity of MNC to adsorb Cr(VI) and Pb(II) was evaluated. The effects of the initial pH, dosage, concentration and temperature on the adsorption capacity of MNC were measured. MNC had a large specific surface area and a special porous structure. Its nitrogen and carbon sources were rich, and the ratio of carbon to nitrogen was fixed. The maximum Cr(VI)-adsorption capacity and maximum Pb(II) adsorption capacity of MNC could reach 456.63 and 507.13 mg∙g−1 at 318 K, respectively. The pseudo-second-order model was used to describe the adsorption kinetics of MNC, and the Freundlich model was employed to discuss its isotherms. The adsorption process was affected by the electrostatic force, the reducing reaction, pores and chelation. The results of this study suggest that MNC is a material with superior performance, and is very easily regenerated, reused, and separated in the adsorption process. 相似文献