首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
孙威  杨春维  汤茜 《广东化工》2012,39(16):11-12,8
本实验研究了单独使用过硫酸盐、UV协同过硫酸盐法对甲基橙废水的处理,实验结粜表明,当处理甲基橙的浓度为100mg/L时,单独使用过硫酸钠时和UV协同过硫酸盐一体系时,在过硫酸钠浓度为O.5g/L,在pH为5时,时问为40min,温度为45℃时,处理效果最好,甲基橙最大去除率可达92.62%。  相似文献   

2.
硫酸铁改性活性炭催化微波降解甲基橙的研究   总被引:3,自引:0,他引:3  
在硫酸铁改性活性炭存在下,微波照射能使溶液中的甲基橙迅速降解。对总体积25ml,浓度500mg/L的甲基橙溶液,改性活性炭加入量2.0g/L微波辐射3.0分钟,降解率达76.60%。适当提高活性炭加入量,如3. 0g/L,同样辐射时间可达95.40%。在同样条件下采用未改性活性炭时,其降解率分别为69.53%和90.97%。采用紫外-可见光谱和离子色谱技术探讨了微波辐射时间、甲基橙初始浓度、活性炭用量、改性硫酸铁浓度和溶液酸度对降解甲基橙的影响。  相似文献   

3.
孙威  刘春婷  李娜 《辽宁化工》2014,(11):1373-1375
过硫酸盐利用热、过渡金属离子、超声与热的联合作用等方法活化产生的强氧化性硫酸根自由基4SO??,在环境污染治理领域具有广阔的应用前景。本研究比较分析过渡金属离子Mn2+、Fe2+、Cu2+、Co2+、Ag+对过硫酸钠在降解甲基橙废水过程中的活化作用。实验结果显示在甲基橙的浓度过40mg/L,p H值在5-6之间,过硫酸盐的浓度为0.1 mol/L,金属离子的浓度相同时(均为5 mmol/L),对过硫酸盐的活化效果最好,最大去除率可达到91.60%。  相似文献   

4.
用盐酸和氨水对活性炭进行改性获得改性活性炭,将其用于处理甲基橙废水,考察了改性条件、振荡速度和温度等因素对甲基橙吸附性能的影响,采用吸附等温模型和吸附动力学模型进行拟合,并分析吸附过程的热力学特征. 结果表明,盐酸改性活性炭对甲基橙的吸附效果优于氨水改性活性炭,在甲基橙初始浓度60 mg/L、溶液体积50 mL、温度20℃、振荡速度100 r/min、盐酸改性活性炭投加量0.2 g时,24 h基本达到吸附平衡,甲基橙去除率为93.7%. 不同温度下,盐酸改性活性炭对甲基橙的吸附符合Langmuir(RC2>0.95)和Freundlich(RC2>0.97)吸附等温模型,饱和吸附量达112.7 mg/g. 热力学参数DG0<0,DH0>0,DS0>0,表明盐酸改性活性炭对甲基橙的吸附是自发吸热反应,其吸附动力学可用准二级动力学方程描述,随振荡速度增加,吸附速率常数增加.  相似文献   

5.
6.
本文利用盐酸对活性炭进行了改性,并研究其对甲基橙的吸附性能.主要考察了吸附剂用量、甲基橙的初始浓度、吸附温度和吸附时间等因素对甲基橙吸附性能的影响,确定了盐酸改性活性炭吸附甲基橙的最佳工艺条件.结果表明,吸附剂用量30 mg、甲基橙初始浓度60 mg/L、吸附温度40℃、吸附时间8 h的条件下,改性活性炭对甲基橙的吸附...  相似文献   

7.
自制一种新型粘结剂(NB),并用此粘结剂与活性炭粉末(AC)混合制备活性炭电极(ACE)。利用数码相机、扫描电子显微镜(SEM)及傅立叶红外光谱仪(FTIR)对电极表面形貌、亲水性及电极表面的官能团进行分析,并用此电极进行电吸附甲基橙(MO)的操作条件及动力学研究。结果表明,电极亲水性好,并含有大量含氧官能团;在MO初始质量浓度为40 mg/L、电解质(Na2SO4)质量浓度5.0 mg/L、pH为6.5、温度为25℃时,600 mV电压下,MO的去除率达到88.35%,较开路时提高了17.18%;动力学分析表明,在AC电极上电吸附MO溶液符合Lagergren 1级吸附动力学模型。  相似文献   

8.
通过溶剂热法制备了ZIF-67,并碳化生成ZIF-67(C)。利用红外光谱、BET比表面积测试、Zeta电位、X射线衍射和X射线光电子能谱等对ZIF-67(C)进行表征。以甲基橙(MO)降解实验验证了ZIF-67(C)对过一硫酸氢钾(PMS)的催化作用,鉴定了反应中的主要活性物种是硫酸根自由基(SO4·-),讨论了金属与有机配体物质的量之比、溶剂种类和煅烧温度(T)以及MO初始浓度、反应初始p H、ZIF-67(C))投加量和PMS投加量对ZIF-67(C)活化PMS降解MO的影响。结果表明:与ZIF-67比,ZIF-67(C)不仅有较好的吸附性能,且对PMS的催化能力更强。当制备条件为n(Co2+)∶n(2-MIM)=1∶8、甲醇为溶剂、T=500℃时,ZIF-67(C)表现出最优的PMS催化性能;当MO初始质量浓度为10 mg/L,ZIF-67(C)投加质量浓度为0.2 g/L,PMS投加质量浓度为0.2 g/L时,1 h内MO的去除率达93.7%。同时,ZIF-67(C)在水中的分散性和稳定性强,重复使用4次后MO...  相似文献   

9.
微波协同活性炭法处理甲基橙废水的研究   总被引:8,自引:1,他引:8  
以粉末活性炭为催化剂,运用微波协同氧化工艺,对模拟甲基橙废水进行处理.考察了微波功率、辐射时间、活性炭用量对甲基橙脱色率的影响,在甲基橙浓度305 mg·L-1、微波功率580 W、辐射时间10 min的条件下,甲基橙色度去除率为99.63%.  相似文献   

10.
零价铁活化过硫酸钠降解甲基橙   总被引:1,自引:0,他引:1       下载免费PDF全文
杨梅梅  周少奇  郑永鑫  郑可 《化工进展》2012,31(9):2093-2096,2101
采用零价铁(Fe0)活化过硫酸钠(PDS)的方式产生具有强氧化性的硫酸根自由基,以偶氮染料甲基橙(MO)为目标污染物,考察了硫酸根自由基对甲基橙的氧化降解行为。系统研究了PDS、Fe0投加量、体系初始pH值、反应温度以及染料初始浓度对反应的影响。结果表明:Fe0/PDS体系能有效地降解甲基橙,在MO初始浓度100 mg/L、PDS投加量为0.912 mmol/L、Fe0投加量0.16 g/L、初始pH值为4.0、温度为298 K的条件下,反应进行2.5 h MO去除率达到80.2%;同时还探索了Fe0/PDS体系降解MO的动力学过程,证实了MO的降解分为两个阶段,且第二阶段的氧化降解符合一级动力学反应。  相似文献   

11.
史盼盼  陈丛瑾 《精细化工》2020,37(6):1265-1273
以桉木屑为原料,KOH为活化剂,FeCl_3·6H_2O为赋磁剂一步法制备了桉木基磁性活性炭。用全自动比表面积及孔径分析仪、FTIR、XRD、VSM等手段对其结构与性能进行了表征与测试。以其为吸附剂,考察了吸附剂用量、甲基橙初始浓度、pH值、吸附时间等对甲基橙吸附效果的影响,并分析了吸附热力学和动力学。结果表明,桉木基磁性活性炭MAC-0.42的比表面积为1430.32 m~2/g,总孔体积为0.893 cm~3/g,平均孔径为2.49nm。在吸附剂用量为0.045 g、甲基橙初始质量浓度为0.25 g/L、溶液在自然pH(约为6.82)、吸附时间为10 h的条件下,进行了吸附动力学和吸附等温线实验。桉木基磁性活性炭的碘吸附值和亚甲基蓝吸附值分别为1571.4和315.52 mg/g。桉木基磁性活性炭表面含有—OH、—C==O、—COO等官能团,其中有磁性物质Fe和Fe3O4,MAC-0.42的饱和磁化强度为48.65emu/g,在外加磁场时能快速将其从溶液中分离出来。其对甲基橙的吸附符合Langmuir模型,最大吸附量为333.33 mg/g;吸附过程是自发吸热过程,吸附动力学符合准二级动力学模型。  相似文献   

12.
通过化学交联法制备了纯壳聚糖膜和壳聚糖/活性炭纤维复合膜(质量比为1∶1.1);探讨时间、pH值、温度、甲基橙溶液初始浓度以及吸附剂用量对吸附甲基橙的影响。研究结果表明,最佳吸附时间为120 min,在pH为6.0,甲基橙初始浓度10 mg/L,温度为10℃时,膜对甲基橙的吸附效果最好,去除率达99.54%。  相似文献   

13.
由于羧基化碳纳米管孔径结构和表面性质在制备过程中具有广泛的可调控性,通过聚乙烯亚胺(PEI)对其进行化学改性和表面修饰。系统地研究了改性碳纳米管(PEI-CNT/COOH)与污染物吸附特性之间的关系。实验证实PEI-CNT/COOH对甲基橙的吸附符合假二阶方程与Langmuir等温吸附模型。通过研究热力学参数证实PEICNT/COOH对甲基橙的吸附是一个自发放热过程。25℃下,PEI-CNT/COOH对甲基橙的吸附量为1 218.8 mg/g,远远高于未改性CNT/COOH对甲基橙的吸附量(466.6 mg/g)。  相似文献   

14.
采用零价铁与活性炭协同活化过硫酸盐处理碱性高浓度电镀槽有机废液。在原水COD≥10000 mg/L,pH为碱性的条件下,考察了过硫酸钠、零价铁与活性炭投加量以及反应时间、初始pH等因素对COD去除效果的影响,并通过正交实验确定了降解最优条件。结果表明:在过硫酸钠投加量为22 g/L,零价铁投加量为4.8 g/L,活性炭投加量为1.2 g/L,初始pH为11,反应时间为3 h的最优条件下,COD去除率达86.40%,TOC、TP去除率分别为66.95%、96.50%。对COD的降解过程符合一级反应动力学方程。  相似文献   

15.
通过采用锰盐对普通颗粒活性炭进行改性,添加少量铁屑后,获得了对电镀废水中重金属铬具有更强吸附能力的改性活性炭铁吸附剂。该吸附剂具有吸附速度更快、吸附量更大以及适应p H范围更宽的特点。对低浓度含铬废水,改性活性炭铁吸附剂能在p H为6~7、接触时间为1.5 h实现90%以上的总铬去除率。  相似文献   

16.
改性活性炭吸附除砷的研究   总被引:2,自引:0,他引:2  
以小麦秸秆、木屑、煤渣等所制备的活性炭及其活性炭负载铁作为吸附剂,用于水中As(Ⅲ)的去除。考察了活性炭种类、吸附时间、吸附温度、溶液pH值和吸附剂投加量等对As(Ⅲ)去除的影响。结果表明,木屑制备的活性炭所负载铁作为吸附剂,对水中As(Ⅲ)的去除效果最好;As(Ⅲ)的去除率随吸附时间、吸附温度、溶液pH值和吸附剂投加量的增加而增加。  相似文献   

17.
程爱华  马万超  徐哲 《化工进展》2020,39(2):798-804
采用低温等离子体技术对海绵铁表面进行改性,并将其用于活化过硫酸盐(PS)处理含酚废水。通过氮气等温吸附(BET)、X射线衍射(XRD)和扫描电子显微镜(SEM)等手段对改性前后的海绵铁进行表征分析。以苯酚为目标污染物,通过静态实验考察催化剂投加量、催化剂/PS摩尔比、pH和苯酚初始浓度对等离子体改性海绵铁活化PS处理含酚废水的影响。结果表明,改性后的海绵铁比表面积、孔容及孔径均有增大,活化PS能力显著提高;在最佳反应条件(等离子改性海绵铁的投加量为0.4g/L,催化剂/PS摩尔比为1∶15,溶液pH为2,苯酚的初始浓度为250mg/L)下,苯酚的去除率可达95%;反应过程符合二级反应动力学,主要是硫酸根自由基和羟基自由基起氧化作用。等离子体技术改性海绵铁活化过硫酸钠可有效去除水中苯酚,为实际含酚废水的处理提供一些思路。  相似文献   

18.
采用SO_2高温焙烧法对活性炭进行了掺硫改性,并以掺硫活性炭(ACS)为催化剂,研究了对氯苯酚(4-CP)在ACS活化过硫酸盐(ACS/PS)体系中的降解规律和机理。结果表明,ACS比表面积有所降低,同时表面掺杂的含硫官能团以砜基和噻吩基为主。ACS的催化活性有明显提升,尤其在酸性环境和较高反应温度时。在反应温度为55℃时,反应210 min,ACS/PS体系4-CP几乎完全降解,相对改性前提高30.9%。基于中间产物测定数据,初步推断了4-CP在ACS/PS体系中的降解机理和过程。  相似文献   

19.
热活化过硫酸盐降解水中卡马西平   总被引:5,自引:1,他引:5       下载免费PDF全文
以典型抗癫痫药物卡马西平为目标污染物, 研究热活化过硫酸盐(thermally activated persulfate, TAP)技术对其的降解效果。此外, 还考察了过硫酸盐初始浓度、温度和零价铁投加量等对降解效果的影响。结果表明, 随着过硫酸盐初始浓度的增加, 降解速率常数提高, 不同温度下卡马西平降解速率常数与过硫酸盐初始浓度表现出良好的线性关系。提高系统温度能够提高卡马西平的降解速率。TAP氧化卡马西平符合拟一级动力学, 反应活化能Ea为(120.4±2.6)kJ·mol-1。在TAP系统中加入少量零价铁能够显著地提高卡马西平的降解速率和矿化度。当温度为60℃时, 零价铁的最佳投加量为0.05 g·L-1。硫酸自由基易于对卡马西平分子结构中氮杂卓环的烯烃双键进行攻击, 主要生成羟基化卡马西平、环氧卡马西平、吡啶类醛和酮等中间产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号