首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A PZT wafer poled in thickness direction is subject to through-thickness electric field cyclic loads at four different loading rates and four different temperatures. Electric displacement in thickness direction and in-plane extensional strain are measured and plotted during a complete cycle of polarization reversal. Reference remnant polarization and reference remnant in-plane extensional strain are calculated from the measured data. Effects of electric field loading rate and temperature on domain switching process and evolutions of reference remnant state variables are discussed and explained using consecutive two step slow 90° domain switching processes and reduced coercive field at high temperatures.  相似文献   

2.
Strain and applied external electric fields are known to influence domain evolution and associated ferroelectric responses in ferroelectric thin films. Here, phase‐field simulations are used to predict equilibrium domain structures and polarization‐field (PE) hysteresis loops of lead zirconate titanate (PZT) thin films under a series of mismatch strains, ranging from strongly tensile to strongly compressive. In particular, the evolution of domains and the PE curves under different applied strains reveal the mesoscale mechanism, the appearance of in‐plane polarization during domain switching, that is responsible for a relatively small coercive field and remnant polarization. A Landau energy distribution is analyzed to better understand the domain evolution under various strain conditions. The results provide guidance for choice of mismatched strains to yield the desired PE hysteresis loops and the domain structures.  相似文献   

3.
Thin and flexible glass ribbons can be rolled into a film capacitor structures for power electronic circuits. Glass has excellent electrical properties and is a leading candidate to replace polymer films for high‐temperature applications. The dielectric properties of a low‐alkali aluminoborosilicate glass were characterized up to temperatures of 400°C. Low‐field permittivity values of 6 with dielectric loss below 0.01 were found for temperatures below 300°C. The dielectric breakdown strength exceeded 5 MV/cm for temperature of 400°C and high‐field polarization measurements showed that glass has over 95% energy efficiency at temperatures of 200°C, which is a target temperature for high‐temperature power electronic circuits driven by wide bandgap semiconductor devices.  相似文献   

4.
A ferroelectric device, making use of a flexible plastic, polyethylenterephtalate (PET), as a substrate was fabricated by all solution processes. PET was globally coated by a conducting polymer, poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) acid (PEDOT/PSSH), which is used as bottom electrode. The ferroelectric copolymer, poly(vinylidenefluoride–trifluoroethylene) (PVDF–TrFE), thin film was deposited by spin‐coating process from solution. The top electrode, polyaniline, was coated by solution process as well. The ferroelectric properties were measured on this all solution processed all polymer ferroelectric thin‐film devices. A square and symmetric hysteresis loop was observed with high‐polarization level at 15‐V drive voltage on a all polymer device with 700 Å (PVDF–TrFE) film. The relatively inexpensive conducting polyaniline electrode is functional well and therefore is a good candidate as electrode material for ferroelectric polymer thin‐film device. The remnant polarization Pr was 8.5 μC/cm2 before the fatigue. The ferroelectric degradation starts after 1 × 103 times of switching and decreases to 4.9 μC/cm2 after 1 × 105 times of switching. The pulse polarization test shows switching take places as fast as a few micro seconds to reach 90% of the saturated polarization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Two-dimensional computer simulations of ferroelectric polarization switching have been performed using the phase field simulation model developed by employing the time-dependent Ginsburg–Landau equations. The bulk-free energy, polarization gradient energy, long-range dipole–dipole electrostatic interactions, and elastic energy were taken into account in the above-mentioned simulations. The influences of electric–mechanical coupled loading on the hysteresis and butterfly loops were studied. The results showed that the coupled electro-mechanical loading could change both the coercive field of ferroelectric materials and the symmetry of hysteresis and butterfly loops.  相似文献   

6.
Samples of bulk textured polycrystalline BaTiO3 ceramics were fabricated using a templated grain growth (TGG) approach in order to investigate effects of polycrystallinity and texture related to ferroelectric domain reversal under high‐power drive conditions. Barium titanate platelets were formed via two‐step topochemical conversion of bismuth titanate platelets grown via molten salt synthesis, then aligned via tape casting within a matrix of fine BaTiO3 powder. The coarse‐grained parts showed a high degree of crystallographic texture after sintering. Combined with ceramics of similar density and polycrystallinity, but random orientation and commercial single‐crystal specimens, this sample set enabled direct isolation of crystallographic texture and polycrystallinity as the primary variables for high‐power polarization reversal studies. These studies have also demonstrated a link between grain size and polarization reversal time that strongly suggests that grain boundaries serve effectively as nucleation sites during the ferroelectric switching process.  相似文献   

7.
Electrode polarization arising from charge carriers accumulating at the interface between an electrode and nylon 1010 was investigated with dielectric relaxation spectroscopy. In the frequency spectra of nylon 1010, the dielectric permittivity showed high values in the region of low frequencies and high temperatures. With the Havriliak–Negami function used to fit the experimental spectra, the result revealed that the high values originated from electrode polarization and direct‐current conductivity. For electrode polarization, the dielectric strength, independent of the temperature, was about 1150, and the temperature dependence of the relaxation time followed the Vogel–Tammann–Fulcher equation. Fitting with the Vogel–Tammann–Fulcher equation, the parameters τ0 = 1.33 × 10?10 s and T0 = 303.2 K were proposed (where τ0 is the relaxation time at a very high temperature and T0 is the temperature at which the relaxation time becomes extremely large), and they suggested that the motion of the polymeric chains was one of the factors leading to charge‐carrier transport at temperatures higher than the glass‐transition temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3590–3596, 2006  相似文献   

8.
A novel phenomenon of mechanoelectrical conversion in a flexible solid‐state polymer electrolyte membrane (PEM) is presented, hereafter denoted as flexoelectric effect. The flexoelectric coefficient (≈323 µC m?1), that is, a measure of the converted mechanoelectrical energy, is the highest among all flexoelectric materials hitherto reported. It is proposed in this work that the flexoelectricity in PEMs operates based on electrical energy generation driven by ion polarization/depolarization across the PEM subjected to a pressure gradient during bending. Of particular interest is the phenomenon of polarity switching during bending, that is, reversal of the polarization direction with increasing succinonitrile (SCN) concentration (i.e., 10–20 wt%). The size disparity between the solvated cations and anions is attributed as the key factor in determining the polarization direction, which is responsible for the polarity switching. Of particular importance is that the present flexoelectric PEM itself is a key component of the solid‐state lithium ion battery and thus their integration opens up a new avenue for energy harvesting and storage devices.  相似文献   

9.
The polarization switching properties of ferroelectric materials have been extensively studied, both experimentally and theoretically owing to their wide applications in industry and hence generating a need to gain a deeper understanding of factors affecting their switching behaviour. In this paper, an analytical Landau theory incorporating the Landau–Khalatnikov equation has been developed to describe the switching properties of second order ferroelectrics. Analytical expressions derived from exact results of Landau theory are used in modelling work carried out in this study for comparison with trends predicted by empirical laws used to describe polarization switching behaviour at high electric fields. As such this work has established the theoretical basis for empirical laws of polarization switching and developed simple numerical tools which can be quickly used to model trends in polarization switching behaviour of ferroelectrics.  相似文献   

10.
We approach the problem of non‐parametric estimation for autoregressive Markov switching processes. In this context, the Nadaraya–Watson‐type regression functions estimator is interpreted as a solution of a local weighted least‐square problem, which does not admit a closed‐form solution in the case of hidden Markov switching. We introduce a non‐parametric recursive algorithm to approximate the estimator. Our algorithm restores the missing data by means of a Monte Carlo step and estimates the regression function via a Robbins–Monro step. We prove that non‐parametric autoregressive models with Markov switching are identifiable when the hidden Markov process has a finite state space. Consistency of the estimator is proved using the strong α‐mixing property of the model. Finally, we present some simulations illustrating the performances of our non‐parametric estimation procedure.  相似文献   

11.
《Ceramics International》2016,42(14):15517-15529
A study is carried out to understand the temperature dependent non-linear behaviour of PZT wafers under electrical and mechanical loading. Experiments are conducted on PZT wafers at room and elevated temperatures under a high cyclic electric field to examine their behaviour. Experimental characterization is also extended to pure mechanical loading (uni-axial compressive stress) condition at room and elevated temperatures. A temperature dependent micro-mechanical model is proposed based on internal energy to evaluate the ferrolectric and ferroelastic behaviour of PZT wafer. The developed model is incorporated into a 3D finite element framework and numerical simulations are performed. The simulated results for electrical loading are compared with experimental observations which show a significant decrease in dielectric response at elevated temperature and it is also observed that the operating temperature influences the electrical displacement and strain along poling direction (thickness direction) under mechanical loading. A parametric study has also been conducted to understand the performance of PZT wafer in which macro-state variables such as remnant polarization, remnant strain, maximum polarization, and maximum strain are extracted and discussed as a function of temperature.  相似文献   

12.
Anisotropic domain switching paths in [001]‐, [011]‐, and [111]‐poled Pb(Mg1/3Nb2/3)O3‐0.30PbTiO3 single crystals were studied by in situ polarized light microscopic driven by an antiparallel electric field. Orientation‐dependent electric field induced polarization and strain behaviors were investigated systematically. For [001]‐oriented crystals, only one‐step 71° switching occurred during the domain switching process, resulting in the appearance of stripe domain walls whose traces on (001) plane were along 45° or 135° with respect to [100] direction. But for [011]‐oriented samples, a two‐step 71° switching was observed during 109° switching and the projections of formed twin domain walls on the (011) plane are along 35.3° or 144.7° with respect to [01] direction. Moreover, a three‐step 71° switching was found during 180° switching in [111]‐oriented samples. It was demonstrated by the produced domain walls whose projections on the (10) plane are along 35.3°, 90° or 160.6° with respect to [11] direction. The energetically motivated mechanism based on multistep polarization switching process was also proposed to explain the anisotropic domain switching paths. Our results provided a visualized observation on the ferroelectric domain switching process and also laid the solid foundations for controlling polarization order parameter in ferroelectric single crystals.  相似文献   

13.
The well-saturated ferroelectric hysteresis loops with double remnant polarization up to 50?μC/cm2 were obtained in four layered Aurivillius-type multiferroic Bi5FeTi3O15 thin film. Pulsed positive-up negative-down polarization measurements demonstrate the intrinsic ferroelectric polarization, which present optimal rectangularity and polarization value. The hysteresis loops measurements with larger frequency range of 0.2–100?kHz indicate stable and ultra-fast switching speed of ferroelectric domains. Persistent retention properties were observed, and they are also independent of the applied electric field. In fatigue test an increased dielectric constant is observed along with the suppression of switchable polarization. Both of them can be restored partly to their original values via the stimulating of high electric field. The block domain switching due to the oxygen vacancies aggregated on domain walls are discussed for those characteristics. It is providing important contributions of domain wall pinning in the polarization degradation of Aurivillius-type ferroelectric films with four layers.  相似文献   

14.
Piezoelectric actuators are typically preloaded with a modest mechanical compressive stress during actuation to reduce cracking and allow for operation in the dynamic range. In addition, actuators are required to carry out mechanical work during operation, resulting in a nonlinear relationship between stress and actuation voltage. In fact, mechanical loading can significantly impact the electromechanical performance of lead‐free piezoelectrics. Herein, we report the dependence of electromechanical properties of CaZrO3 modified (K,Na)NbO3‐based lead‐free piezoceramics on uniaxial compressive stress, comparing to their lead‐based counterparts. It is demonstrated that increased non‐180° domain switching enhances the strain output at a moderate stress of approximately ?50 MPa from room temperature to 150°C. Larger uniaxial stress, however, is found to suppress ferroelectric domain switching, resulting in the continuous strain and polarization decrease.  相似文献   

15.
Ferroelectric electron emission has two possible sources: rapid polarization switching and surface plasma discharge. The present paper uses an X-ray diffraction (XRD) method to support the theory of rapid polarization switching for lead zirconate titanate samples. A decrease in the 002 peak value and an increase in the 200 peak value were observed after electron emission in two types of samples, which were doped with lanthanum and neodymium. A comparison of the XRD data for the samples showed that a high-density electron emission was related to a high-value polarization switch. These results were consistent with the theory of rapid polarization switching.  相似文献   

16.
The influence of temperature on the variation in dielectric nonlinearity and domain structures was investigated for the (Ba0.95Ca0.05)(Ti0.83Zr0.17)O3 (BCTZ)‐based multilayer ceramic capacitor that shows a diffuse phase transition. Whereas the dielectric constant (εr) vs temperature shows a broadened maximum peak at low ac driving field, such a peaked behavior disappears at high ac driving field due to an abrupt increase in dielectric constants at low temperatures. Such low temperature effect can be associated with an enhanced spontaneous polarization (PS) and a significant increase in irreversible domain wall contribution to polarization representing normal ferroelectric behavior based on the Preisach analysis. No ferroelectric domain contrasts were observed at room temperature through transmission electron microscopy. However, they appeared and became more and more distinct with the decrease in temperature, and the crystal structure also changed from cubic to rhombohedral with increased lattice constants. It demonstrates that the dramatic increase in the dielectric nonlinearity with decreasing temperatures originates from the corresponding changes in domain and crystal structure, where the polar‐micro‐regions of BCTZ at room temperature change to normal ferroelectric domains at low temperatures.  相似文献   

17.
We study thermal conductivity (κ) of amorphous silicon boron nitride (a‐SiBN) for different compositions and densities as a function of temperature using density functional theory (DFT) calculations and equilibrium molecular dynamic (MD) simulations. Our library of amorphous structures consists of network models comprising 100‐200 atoms and large‐scale models with up to 57 000 atoms generated using the empirical Marian‐Gastreich two‐body potential. Crystalline structures within the Si3N4‐BN system are considered as well. We use 2 distinct approaches to compute thermal conductivity of a‐SiBN. To estimate κ in the high‐temperature limit we feed Clarke's phenomenological model with elasticity data obtained by DFT calculations. We further perform equilibrium MD simulations and apply the Green‐Kubo method. This approach shows decrease of κ with increasing temperature and provides results at high temperatures that agree with results derived within Clarke's model. We find that κ of a‐SiBN depends on composition and increases as the BN content in the structure increases. The effect is pronounced at low temperature but almost vanishes at high temperature. Furthermore, thermal conductivity depends on density and porosity, with a linear relation between κ and density.  相似文献   

18.
A solid oxide fuel cell in operando is a complex multiphasic entity under electrical polarization and operating at high temperatures. In this work, we reproduce these conditions while studying transition metal redox chemistry in situ at the cathode. This was achieved by building a furnace that allowed for X‐ray absorption near‐edge structure and AC impedance spectroscopy data to be obtained simultaneously on symmetrical cells while at operating temperatures. The cell electrodes consisted of phases from the Ruddlesden–Popper family; La2NiO4+δ, La4Ni3O10–δ, and composites thereof. The redox chemistry of nickel in these cathodes was probed in situ through investigation of changes in the position of the X‐ray absorption K‐edge. An oxidation state reduction (Ni3+ to Ni2+) was observed on heating the cells; this was correlated to changing concentrations of ionic charge carriers in the electrode. Polarizing the cells resulted in dramatic changes to their electrical performance but not to the bulk redox chemistry of the electrode. The implications of this with respect to explaining the polarization behavior are discussed.  相似文献   

19.
We present the results of an experimental investigation of the energy balance of a Ballard MK5‐E proton exchange membrane fuel cell (PEMFC) stack. We have investigated the transient phenomena that occur during PEMFC stack warm‐up, under load switching, and when the PEMFC stack is connected to a DC/AC inverter. A simple and convenient model describing the polarization curve as a function of the temperature is presented and validated by our experimental data. We also present experimental results on the increase PEMFC stack performance as a function of the current density for different oxygen concentrations of the oxidant gas.  相似文献   

20.
The glass transition temperatures (Tgs) and proton conductivities of polyimides synthesized from naphthalene‐1,4,5,8‐tetracarboxylic dianhydride (NTDA), 2,2′‐benzidinedisulfonic acid (BDSA), 4,4′‐diaminodiphenylether‐2,2′‐disulfonic acid (ODADS), and non‐sulfonated diamine monomers have been predicted using molecular dynamics simulations. The specific volumes for two dry and four hydrated NTDA‐based polyimides were plotted versus temperatures above and below Tgs to obtain the glass transition temperatures. The simulation results suggest that the ODADS‐based polyimide membranes exhibit lower Tgs and thus better mechanical properties than the BDSA‐based polyimides, which may be attributed to the high mobility of backbones of ODADS as supported by the vectorial autocorrelation function (VACF) results of this study. In addition, comparison of the simulated Tgs for the dry and hydrated ODADS‐based polyimides has shown that water content in polyimides can affect their Tgs. The proton conductivities of a representative polyimide in both dry and hydrated conditions have been obtained from molecular dynamics simulations of the proton and hydronium ion diffusion. The simulated conductivity for the hydrated NTDA‐ODADS/BAPB cell is in reasonable agreement with the experimental value obtained from the AC impedance method. The relationship between the chemical composition, chain flexibility, and the glass transition and proton conduction of these NTDA‐based polyimides was explored on the basis of VACF and pair correlation function analysis. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号