首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Dense nanocrystalline barium strontium titanate Ba0.6Sr0.4TiO3 (BST) ceramics with an average grain size around 40 nm and very small dispersion were obtained by spark plasma sintering at 950°C and 1050°C starting from nonagglomerated nanopowders (~20 nm). The powders were synthesized by a modified “Organosol” process. X‐ray diffraction (XRD) and dielectric measurements in the temperature range 173–313 K were used to investigate the evolution of crystal structure and the ferroelectric to paraelectric phase transformation behavior for the sintered BST ceramics with different grain sizes. The Curie temperature TC decreases, whereas the phase transition becomes diffuse for the particle size decreasing from about 190 to 40 nm with matching XRD and permittivity data. Even the ceramics with an average grain size as small as 40 nm show the transition into the ferroelectric state. The dielectric permittivity ε shows relatively good thermal stability over a wide temperature range. The dielectric losses are smaller than 2%–4% in the frequency range of 100 Hz–1 MHz and temperature interval 160–320 K. A decrease in the dielectric permittivity in nanocrystalline ceramics was observed compared to submicrometer‐sized ceramics.  相似文献   

2.
《Ceramics International》2022,48(12):16839-16844
In this work, the effects of starting oxide powders with different-scale particle sizes on the synthesis of gadolinium zirconate pyrochlore (Gd2Zr2O7, GZO) and its physical properties were studied. Micron Gd2O3 (μG), micron ZrO2 (μZ), nano Gd2O3 (nG), and nano ZrO2 (nZ) powders were used. GZO ceramics were prepared by employing solid-state reactive sintering at 1300 °C, 1400 °C, 1500 °C and 1600 °C with mixed powders of different sizes (μGμZ, μGnZ, nGμZ and nGnZ). X-ray diffraction and Raman analyses of the ceramics revealed that nG has a more significant impact on the crystallization process than nZ. All ceramics synthesized with different sized oxide powders crystallized into pyrochlore phases except for those synthesized with μGnZ mixed powders, which resulted in a fluorite phase. The results indicated that decreasing the particle size of only ZrO2 to synthesize pyrochlore-phase Gd2Zr2O7 with high crystallinity may not be effective. Samples obtained at 1500 °C were further analyzed. Scanning electron microscopy results revealed that all four ceramics have a non-homogeneous grain size and that the average grain size ranges from 5.40 to 8.30 μm. In addition, the density and Vickers hardness measurements showed that the use of nanopowders significantly improves the mechanical properties.  相似文献   

3.
The preparation of Ba0.85Ca0.15 Zr0.1Ti0.9O3 (BCZT) powders by wet chemical methods has been investigated, and the powders used to explore relationships between the microstructure and piezoelectric properties (d33 coefficient) of sintered BCZT ceramics. Sol–gel synthesis has been shown to be a successful method for the preparation of BCZT nanopowders with a pure tetragonal perovskite phase structure, specific surface area up to 21.8 m2/g and a mean particle size of 48 nm. These powders were suitable for the fabrication of dense BCZT ceramics with fine‐grain microstructures. The ceramics with the highest density of 95% theoretical density (TD) and grain size of 1.3 μm were prepared by uniaxial pressing followed by a two‐step sintering approach which contributed to the refinement of the BCTZ microstructure. A decrease in the grain size to 0.8–0.9 μm was achieved when samples were prepared using cold isostatic pressing. Using various sintering schedules, BCZT ceramics with broad range of grain sizes (0.8–60.5 μm) were prepared. The highest d33 = 410.8 ± 13.2 pC/N was exhibited by ceramics prepared from sol–gel powder sintered at 1425°C, with the relative density of 89.6%TD and grain size of 36 μm.  相似文献   

4.
Nanocrystalline UO2+x powders are prepared by high‐energy ball milling and subsequently consolidated into dense fuel pellets (>95% of theoretical density) under high pressure (750 MPa) by spark plasma sintering at low sintering temperatures (600°C‐700°C). The grain size achieved in the dense nano‐ceramic pellets varies within 60‐160 nm as controlled by sintering temperature and duration. The sintered fuel pellets are single phase UO2+x with hyper‐stoichiometric compositions as derived by X‐ray diffraction, and micro‐Raman measurements indicate that random oxygen interstitials and Willis clusters dominate the single phase nano‐sized oxide pellets of UO2.03 and UO2.11, respectively. The thermal conductivities of the densified nano‐sized oxide fuel pellets are measured by laser flash, and the fuel stoichiometry displays a dominant effect in controlling thermal transport properties. A reduction in thermal conductivity is also observed for the dense nano‐sized pellets as compared with micron‐sized counterparts reported in the literature. The correlation among the SPS sintering parameters—microstructure control—properties is established, and the nano‐sized UO2+x pellets with controlled microstructure can serve as the model systems for fundamental understandings of fuel behaviors and obtaining critical experimental data for multi‐physics MARMOT model validation.  相似文献   

5.
Pure and barium titanate (BT) powders doped with different lanthanum concentration were prepared by the polymeric precursor method (Pechini process) which was carried out as a three-stage process from organometallic complexes. Sintering of pressed powders was performed at 1300 °C for 2, 4 and 8 h. XRD analysis showed cubic BT powders with crystallite sizes between 20 and 25 nm and tetragonal crystal structure of BT ceramics. The influence of sintering time on grain growth was fairly obvious. It was found that lanthanum doping has significant effect on powders particle size and ceramics grain size. The influence of lanthanum concentration on grain size inhibition, improving the dielectric properties of BT ceramics was detected. The relation between sintering time, grain size, structure and electrical properties of the BT ceramics was analyzed.  相似文献   

6.
Transparent polycrystalline Gd3TaO7 ceramics were successfully developed. A sol‐gel process was used to synthesize Gd3TaO7 powder with a uniform composition and an estimated average particle size of 100 nm. Simultaneous thermal gravimetric analysis and differential thermal analysis (TGA/DTA) was used to identify the decomposition sequence as a function of temperature for the as‐synthesized sol‐gel powders. Crystallization was confirmed by X‐ray diffraction (XRD) and a single phase was achieved by calcining at 1000°C. The calcined powders were hot‐pressed at 1400°C to achieve >96% theoretical density with closed pore structure followed by a hot isostatic pressing at 1400°C at 207 MPa to achieve a fully dense structure. Microstructural characterization shows a uniform grain size distribution with an average grain size of about 7 μm. In‐line transmission measurements revealed high transparency in the red and infrared. Thermal conductivity was measured to be >1.6 W/mK at room temperature, decreasing to ~1.3 W/mK by 500°C. Dielectric properties remain stable with relative permittivity values just above 200 and loss tangents <0.005 up to 350°C.  相似文献   

7.
《Ceramics International》2020,46(17):27193-27198
In this work, cold sintering was adopted to prepare Na2WO4 ceramics with different grain sizes ranging from 0.632 μm to 17.825 μm. Their microstructures, complex impedance, and microwave dielectric properties were studied in-depth. It was found that samples with relative densities higher than 92% can be successfully synthesized by cold sintering process at a low temperature of 240 °C. However, their electrical properties have strong dependence on the grain size. Specifically, the resistance of grain boundaries decreases dramatically with the increase of grain sizes, while the quality factor has a positive correlation with the grain sizes of Na2WO4 ceramics. Excellent microwave dielectric properties, including permittivity = 5.80, Q × f = 22,000 GHz, and TCF = −70 ppm/°C, are obtained for Na2WO4 ceramics with a grain size of 4.477 μm prepared by cold sintering process.  相似文献   

8.
The characterization of powders prepared using the inorganic–organic steric entrapment method was explored and compared to the conventional solid‐state route, using X‐ray diffraction, differential scanning calorimetry, particle size analysis, and specific surface area measurements. β‐eucryptite was crystallized at 627°C and the properties of the resulting powder allowed for increased densification upon sintering compared to conventional methods. The thermal expansion behavior was also determined in situ using X‐ray diffraction and was found to be similar to other published studies, but thermal expansion in all {hkl} pole directions has been measured.  相似文献   

9.
Ultra fine nickel ferrite have been synthesized by the sol‐gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano‐sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X‐ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The fabrication of 0.5 mol% Ce:LuAG transparent ceramics starting from synthetic nanosized Ce:LuAG powders was investigated by low temperature vacuum sintering. It was found that high quality optical Ce:LuAG ceramics could be densified successfully by vacuum sintering (<10–3 pa) at 1750°C for 10 h. The in‐line optical transmittance of as‐sintered Ce:LuAG ceramics with thickness of 0.7 mm could reach 73.48% at the wavelength of 550 nm. The microstructure observations revealed that transparent Ce:LuAG ceramics were composed of uniform LuAG grains with average size of 9 μm and HRTEM morphology indicated that no impurity segregation existed at grain boundaries or within Ce:LuAG grains. It was also demonstrated that the annealing treatment (at 1450°C for 20 h in air) could greatly enhance the luminescent intensity of as‐sintered Ce:LuAG ceramics under excitation of X‐ray radiation (75 kV, 25 mA), which makes it a potential candidate to be applied in radiation detector.  相似文献   

11.
Magneto‐electric (ME) ceramic composites of cobalt ferrite (CoF) and lead zirconate titanate (PZT) were prepared by mechanical mixing of the constituent powders followed by cosintering. The cosintering conditions for nano‐sized CoF and submicrometer‐sized PZT powders were studied in detail. It was found that the CoF powder needs to be presintered at 700°C for 2 h to minimize the differences in the sintering kinetics of the constituent powders. Despite the low cosintering temperatures (900°C–1000°C) the interdiffusion of the cations from both phases was confirmed with energy‐dispersive X‐ray analysis and X‐ray diffraction. Efforts were made to optimize the cosintering conditions to prepare dense ceramic ME composites, which showed the converse ME effect.  相似文献   

12.
γ-LiAlO2 ceramics with different grain sizes were prepared by controlling the sintering process and regulating the size and shape of the precursor powders. It was found that a size gradation of powders promoted the growth of γ-LiAlO2 grains. Ceramics with an average grain size of 10 μm were prepared from the size-graded powders. It was demonstrated that the shape of the precursor powders greatly affected the grain growth of the ceramics whereas the granulation of the powders restrained the abnormal grain growth. Furthermore nano-sized precursor powders obtained by a sol–gel route made it possible to prepare nano-structured γ-LiAlO2 ceramics.  相似文献   

13.
Nanocrystalline cobalt aluminate spinel, CoAl2O4, was prepared via a microwave‐assisted solution combustion process applying various mixtures of urea, glycine, and starch as a novel mixed fuel. The effects of starch addition (0, 10, 20, and 30 wt%) on the physical characteristics (e.g. crystallite size and colour) of the blue nano pigments were also investigated. The resultant powders were characterised by means of X‐ray diffraction, scanning electron microscopy, electron dispersive X‐ray analysis, and CIE L*a*b* colour measurements. The presence of a CoAl2O4 spinel lattice after calcination of precursors at 600 °C was confirmed by X‐ray diffraction patterns, and the crystallite sizes were ca. 10–39 nm. Colorimetric data pointed to the formation of bright‐blue pigments at low levels of starch addition. Scanning electron microscope images showed that starch enrichment reduced the agglomeration and size of synthesised nanoparticles.  相似文献   

14.
We have successfully developed transparent polycrystalline Gd2Hf2O7 ceramics with high in‐line transparency. A sol–gel process was used to synthesize the Gd2Hf2O7 powder. Simultaneous thermal gravimetric analysis and differential thermal analysis (TGA/DTA) was used to identify the decomposition sequence as a function of temperature for the as‐synthesized sol–gel powders. The calcined powder is single phase and was formed with an estimated average particle size of 120 nm. Crystallization was confirmed by x‐ray diffraction (XRD) and a single phase was achieved by calcining at 1000°C. The calcined powders were hot‐pressed at 1500°C to achieve >95% theoretical density with closed pore structure followed by a hot isostatic pressing at 1500°C at 207 MPa to achieve a fully dense structure. Microstructural characterization shows a uniform grain size distribution with an average grain size of about 11 μm. In‐line transmission measurements revealed high transparency in the red and infrared. Dielectric properties remain stable with relative permittivity values around 180 and loss tangents less than 0.005 up to 350°C. Thermal conductivity was measured to be ~1.8 W/m°K at room temperature, decreasing to ~1.5 W/m°K by 500°C.  相似文献   

15.
Drop‐based crystallization techniques are used to achieve a high degree of control over crystallization conditions in order to grow high‐quality protein crystals for X‐ray diffraction or to produce organic crystals with well‐controlled size distributions. Simultaneous crystal growth and stochastic nucleation makes it difficult to predict the number and size of crystals that will be produced in a drop‐based crystallization process. A mathematical model of crystallization in drops is developed using a Monte Carlo method. The model incorporates key phenomena in drop‐based crystallization, including stochastic primary nucleation and growth rate dispersion (GRD) and can predict distributions of the number of crystals per drop and full crystal size distributions (CSD). Key dimensionless parameters are identified to quickly screen for crystallization conditions that are expected to yield a high fraction of drops containing one crystal and a narrow CSD. Using literature correlations for the solubilities, growth, and nucleation rates of lactose and lysozyme, the model is able to predict the experimentally observed crystallization behavior over a wide range of conditions. Model‐based strategies for use in the design and optimization of a drop‐based crystallization process for producing crystals of well‐controlled CSD are identified. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
Samples of transparent polycrystalline spinel with average grain size varying from 0.14 to 170 μm were prepared by different sintering approaches. The effect of grain size on the flexural strength, hardness and Hugoniot elastic limit (impact loading) was investigated. It was found that values of hardness divided by three for samples with grain size in the 0.14–15 μm range were almost equal to the dynamic yield strength values, estimated based on the Hugoniot elastic limit. This led to the assumption that the onset of inelastic deformation at the Hugoniot elastic limit was brittle rather than ductile. The observed departure of the dynamic yield strength from the hardness divided by three value for ceramics with grain size >15 μm was associated with either impact-induced shear banding or twinning. The feasibility of such banding/twinning intervention in initiating inelastic deformation in the spinel is supported by the values of apparent Hall-Petch coefficients in the corresponding grain size domains.  相似文献   

17.
To avoid introduction of milling media during ball‐milling process and ensure uniform distribution of SiC and graphite in ZrB2 matrix, ultrafine ZrB2–SiC–C composite powders were in‐situ synthesized using inorganic–organic hybrid precursors of Zr(OPr)4, Si(OC2H5)4, H3BO3, and excessive C6H14O6 as source of zirconium, silicon, boron, and carbon, respectively. To inhabit grain growth, the ZrB2–SiC–C composite powders were densified by spark plasma sintering (SPS) at 1950°C for 10 min with the heating rate of 100°C/min. The precursor powders were investigated by thermogravimetric analysis–differential scanning calorimetry and Fourier transform infrared spectroscopy. The ceramic powders were analyzed by X‐ray diffraction, X‐ray photoelectron spectroscopy, and scanning electron microscopy. The lamellar substance was found and determined as graphite nanosheet by scanning electron microscopy, Raman spectrum, and X‐ray diffraction. The SiC grains and graphite nanosheets distributed in ZrB2 matrix uniformly and the grain sizes of ZrB2 and SiC were about 5 μm and 2 μm, respectively. The carbon converted into graphite nanosheets under high temperature during the process of SPS. The presence of graphite nanosheets alters the load‐displacement curves in the fracture process of ZrB2–SiC–G composite. A novel way was explored to prepare ZrB2–SiC–G composite by SPS of in‐situ synthesized ZrB2–SiC–C composite powders.  相似文献   

18.
《Ceramics International》2016,42(7):8206-8211
To investigate how grain size affects the dielectric, ferroelectric, and piezoelectric properties of Mn-modified 0.67BiFeO3–0.33BaTiO3 ceramics, we prepared samples with a wide variety of grain sizes from 4.1 μm to 0.59 μm via a conventional solid-state process that use the normal and the two-step sintering methods. Small-signal dielectric measurements show that all the samples exhibit a relaxor-like behavior and that grain size has little influence on the room-temperature dielectric permittivity. For grain sizes below 2 μm, the remanent polarization Pr and piezoelectric coefficient d33 decrease with the grain size, whereas they remain almost constant near Pr = 27 μC/cm2 and d33 = 70 pC/N in samples with grain sizes exceeding 2 μm. The mechanism underlying the observed grain size effect is discussed in terms of the electric-field-induced formation of macroscopic ferroelectric domains.  相似文献   

19.
Understanding the effect of particle size on the optical properties of phosphor is important to increase packaging efficiency in white light‐emitting diodes (LEDs). We have investigated the effect of particle size (10–20 μm, 20–25 μm, 25–32 μm) on the optical properties of a yellow silicate phosphor adopted in white LEDs. X‐ray diffraction results show negligible modification in crystallinity as the particle size of the yellow silicate phosphor varies, whereas the photoluminescence excitation intensity and quantum yield are enhanced as the particle size increased. LED packages fabricated using phosphors with different mean particle sizes, and their optical properties were analyzed. The radiant flux improved with increasing particle size, whereas the luminous flux increased with decreasing particle size. The effect of immersion on the optical properties of the LED light source has been also measured, and the details are discussed.  相似文献   

20.
Zinc oxide precursors were obtained by the reaction of excess urea with 0.05-0.30 M ZnSO4 in boiling aqueous solution. The precursors precipitated were dried at 100 °C for 2 h to yield powdery products and these products were calcined at 1000 °C for 2 h to yield zinc oxide powders. Differential thermal analysis (DTA) and thermal gravimetric analysis (TGA) curves of the air-dried precursor precipitates show that the suitable temperatures for dehydration of crystal water, of ligand water and of dehydroxylation are 76, 290, and 866 °C, respectively. From the scanning electron microscopy (SEM) photographs and particle size distribution (PSD) curves, the average sizes of the hexagonal plate particles in precursor and ZnO powders are found to be 55 and 35 μm, respectively. X-ray diffraction (XRD) data were evaluated by Scherrer equation for the estimation of the average crystal size of the precursor (11 nm) and ZnO (45 nm). The specific surface area and specific micro-mesopore volume of the ZnO powders are so small as to fall into the experimental error limits. It was concluded that all the measured quantities are not affected considerably by the Zn2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号