首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La2O3–Ga2O3M2O5 (M = Nb or Ta) ternary glasses were fabricated using an aerodynamic levitation technique, and their glass‐forming regions and thermal and optical properties were investigated. Incorporation of adequate amounts of Nb2O5 and Ta2O5 drastically improved the thermal stabilities of the glasses against crystallization. Optical transmittance measurements revealed that all the glasses were transparent over a wide wavelength range from the ultraviolet to the mid‐infrared. The refractive indices of the glasses increased and the Abbe number decreased upon substituting Ga2O3 with Nb2O5, and the decrease in the Abbe number was significantly suppressed when Ta2O5 was incorporated into the glass. As a result, excellent compatibility between high refractive index and lower wavelength dispersion was realized in La2O3–Ga2O3–Ta2O5 glasses. Analysis based on the single‐oscillator Drude–Voigt model provided more systematical information and revealed that this compatibility was due to an increase in the electron density of the glass.  相似文献   

2.
Glass‐ceramics (GC) generally possess enhanced mechanical properties compared to their parent glasses. The knowledge of how crystallization evolves and affects the mechanical properties with increasing temperature is essential to optimize the design of the crystallization cycle. In this study, we crystallized a glass of the MgO–Al2O3–SiO2 system with nucleating agents TiO2 and ZrO2. The crystallization cycle comprised a 48 hour nucleation treatment at the glass‐transition temperature followed by a 10 hour growth step at a higher temperature. During this cycle, the evolution of crystalline phases was followed by high‐temperature X‐ray diffraction (HTXRD), which revealed the presence of karooite (MgO·2TiO2), spinel (MgO·Al2O3), rutile (TiO2), sillimanite (Al2O3·SiO2), and sapphirine (4MgO·5Al2O3·2SiO2). The same heat treatment was applied for in situ measurement of elastic properties: elastic modulus, E, shear modulus, G, and Poisson's ratio, ν. The evolution of these parameters during the heating path from room temperature to the final crystallization temperature and during the nucleation and the crystallization plateaus is discussed. E and G evolve significantly in the first two hours of the growth step. At the end of the crystallization process, the elastic and shear moduli of the GC were approximately 20% larger than those of the parent glass.  相似文献   

3.
Barium sodium niobate (BNN) glass‐ceramics were successfully synthesized through a controlled crystallization method, using both a conventional and a microwave hybrid heating process. The dielectric properties of glass‐ceramics devitrified at different temperatures and conditions were measured. It was found that the dielectric constant increased with higher crystallization temperature, from 750°C to 1000°C, and that growth of the crystalline phase above 900°C was essential to enhancing the relative permittivity and overall energy storage properties of the material. The highest energy storage was found for materials crystallized conventionally at 1000°C with a discharge energy density of 0.13 J/cm3 at a maximum field of 100 kV/cm. Rapid microwave heating was found to not give significant enhancement in dielectric properties, and coarsening of the ferroelectric crystals was found to be critical for higher energy storage.  相似文献   

4.
Ultralow‐temperature sinterable alumina‐45SnF2:25SnO:30P2O5 glass (Al2O3‐SSP glass) composite has been developed for microelectronic applications. The 45SnF2:25SnO:30P2O5 glass prepared by melt quenching from 450°C has a low Tg of about 93°C. The SSP glass has εr and tanδ of 20 and 0.007, respectively, at 1 MHz. In the microwave frequency range, it has εr=16 and Qu × f=990 GHz with τf=?290 ppm/°C at 6.2 GHz with coefficient of thermal expansion (CTE) value of 17.8 ppm/°C. A 30 wt.% Al2O3 ‐ 70 wt.% SSP composite was prepared by sintering at different temperatures from 150°C to 400°C. The crystalline phases and dielectric properties vary with sintering temperature. The alumina‐SSP composite sintered at 200°C has εr=5.41 with a tanδ of 0.01 (1 MHz) and at microwave frequencies it has εr=5.20 at 11 GHz with Qu × f=5500 GHz with temperature coefficient of resonant frequency (τf)=?18 ppm/°C. The CTE and room‐temperature thermal conductivity of the composite sintered at 200°C are 8.7 ppm/°C and 0.47 W/m/K, respectively. The new composite has a low sintering temperature and is a possible candidate for ultralow‐temperature cofired ceramics applications.  相似文献   

5.
The large amount of generated waste determines the importance of their valorization. Red mud is the residue of the Bayer process, which stored cumulative value raises 2.7 Bt. This paper describes an easy way to produce a ferrimagnetic glass‐ceramic frit, using bauxite residue, fly ash and glass cullet as raw materials. The synthesized frit consists of faceted and dendritic agglomerated crystals of magnetite and titanomagnetite embedded in a glass matrix, which exhibits a saturation magnetization (MS) of 6.3 emu/g, a remanent magnetization (MR) of 2.7 emu/g and a coercive field (HC) of 347 Oe. Furthermore, it presents Vickers hardness value of HV = 5.55 ± 0.16 GPa and fracture toughness value of KIC = 1.64 ± 0.34 MPa·m1/2.  相似文献   

6.
Zinc borate glasses with different concentrations of Nb2O5 were prepared and later were heat treated for prolonged times. Prepared samples were characterized by XRD, SEM, DSC, IR and optical transmission spectroscopy techniques. Later, dielectric properties viz., dielectric constant, loss tangent, electric modulii, electrical impedance and a.c. conductivity over wide ranges of frequency and temperature, were investigated as a function of Nb2O5 concentration. Finally, the dielectric breakdown strength was measured in air medium at ambient temperature. The results of characterization techniques viz., XRD, SEM and DSC indicated that multiple crystal grains (with sizes varying from 0.1 to 1 μm) are dispersed in the residual glass phase. The concentration of crystal grains found to increase with increase in Nb2O5 content. The XRD studies have further revealed that the bulk samples are composed of columbite ZnNb2O6 crystal phases. Using generalized gradient approximation (GGA) quantitative information on these crystal phases viz., the lattice parameters, optical band gap and band structure were evaluated. The analysis of results of IR spectral studies have indicated that there is an increasing degree of polymerization of glass network with increase in Nb2O5 content due to the increased connectivity between various structural groups in the glass network. The optical absorption spectra indicated an increase in optical transmittance of the bulk samples with increase in Nb2O5 content. The dielectric parameters are observed to decrease, whereas the dielectric breakdown strength is observed to increase to a large extent due to the crystallization of the glass with the Nb2O5. The increase is attributed to the formation of ZnNb2O6 crystalline phases that contain intertwined ZnO6 and NbO6 structural units. As a whole, zinc borate glasses exhibited a significant increase in the electrical insulating strength due to the crystallization with Nb2O5 as the crystallizing agent. Further, the value of dielectric constant is also found to be the optimal with no dispersion with frequency up to 450 K. Overall, the studied glass‐ceramics meet the necessary physical conditions to be used as insulating layers in the display panels and hence may be considered for such applications.  相似文献   

7.
It is an important subject to improve the temperature coefficient of resonant frequency (τf) and thermal conductivity (κ) of microwave dielectric ceramics without reducing the Qf value. Ordered domain engineering was applied to realize the previous objectives in Ba(Mg1/3Ta2/3)O3 ceramics. With the increasing ordering degree from 0.835 to 0.897, the optimized Qf value was obtained. Meanwhile, near zero τf from 11.9 to 5.6 ppm °C−1 was achieved, together with increased κ from 5.5 to 7.6 W m−1 K−1, and enhanced dielectric strength from 801 to 921 kV cm−1. The noticeable ordered domain structure with large ordered domains (∼100 nm) and low-energy domain boundaries was revealed in Ba(Mg1/3Ta2/3)O3. The consequent weakened phonon scattering rises the thermal conductivity. The increased bond covalency and oxygen distortion in ceramics with higher ordering degree were suggested as a cause of enlarged bandgap, which enhanced the dielectric strength. The reduced τf is dominated by the less “rattling” space of the cations in the ordered state by inducing more positive τε. The reduced τf, optimized thermal conductivity, and Qf value in the present work indicate that the ordered domain engineering could open up a new direction for the optimization of microwave dielectric ceramics.  相似文献   

8.
The luminescent‐ferroelectic materials based on Sr1.90Ca0.15Na0.9Nb5O15 (SCNN) matrix doping with Eu3+ were synthesized by the conventional solid‐state reaction method. The crystal structure, photoluminescence, thermal stability, dielectric, ferroelectric, and piezoelectric behaviors were systematically investigated. XRD results revealed that Eu3+ introduction could induce the tungsten bronze phase transition from orthorhombic to tetragonal structures. The dielectric spectra of all specimens showed two broad dielectric anomalies: a high‐temperature ferroelectric phase transition (Tc) and a low‐temperature ferroelastic phase transition (Ts), both of which were suppressed at higher Eu3+ concentrations. The enhanced electrical properties were obtained in a proper Eu3+ concentration range of 0.03‐0.05. For all SCNN:xEu3+ samples, the strong red emission peak at 617 nm originating from the electric dipole transition of 5D07F2 was excited by different light excitations of 395 or 463 nm. Our results demonstrated that Eu3+‐doped SCNN materials might have promising potential in advanced multifunctional optoelectronic applications.  相似文献   

9.
This paper describes the preparation of a transparent glass‐ceramic from the SiO2‐K2O‐ZnO‐Al2O3‐TiO2 system containing a single crystalline phase, gahnite (ZnAl2O4). TiO2 was used as a nucleating agent for the heat‐induced precipitation of gahnite crystals of 5‐10 nm. The evolution of the ZnAl2O4 spinel structure through the gradual formation of Al‐O bonds was examined by infrared spectroscopy. The dark brown color of the transparent precursor glass and glass‐ceramic was eliminated using CeO2. The increase in transparency of the CeO2‐doped glass and glass‐ceramics was demonstrated by UV‐visible absorption spectroscopy. EPR measurements confirmed the presence of Ce3+ ions, indicating that CeO2 was effective in eliminating the brown color introduced by Ti3+ ions via oxidation to Ti+4. The hardness of the glass‐ceramic was 30% higher than that of the as‐prepared glasses. This work offers key guidelines to produce hard, transparent glass‐ceramics which may be potential candidates for a variety of technological applications, such as armor and display panels.  相似文献   

10.
The microwave dielectric ceramic Li9Zr3NbO13 was found and investigated. Prepared via the solid‐state reaction method, the Li9Zr3NbO13 formed as a Li2ZrO3‐type solid solution at 880‐900°C, with monoclinic structure in C2/c space group and Z = 4. Typically, the Li9Zr3NbO13 sintered at 900°C exhibited the excellent microwave dielectric properties of εr = 21.3, Q×f = 43 600 GHz (at 7.4 GHz), τf = 7.3 ppm/°C.  相似文献   

11.
Effects of quenching process on dielectric, ferroelectric, and piezoelectric properties of 0.71BiFeO3?0.29BaTiO3 ceramics with Mn modification (BF–BT?xmol%Mn) were investigated. The dielectric, ferroelectric, and piezoelectric properties of BF–BT?xmol%Mn were improved by quenching, especially to the BF–BT?0.3 mol%Mn ceramics. The dielectric loss tanδ of quenched BF–BT?0.3 mol%Mn ceramics was only 0.28 at 500°C, which was half of the slow cooling one. Meanwhile, the remnant polarization Pr of quenched BF–BT?0.3 mol%Mn ceramics increased to 21 μC/cm2. It was notable that the piezoelectric constant d33 of quenched BF–BT?0.3 mol%Mn ceramics reached up to 191 pC/N, while the TC was 530°C, showing excellent compatible properties. The BF–BT?xmol%Mn system ceramics showed to obey the Rayleigh law within suitable field regions. The Rayleigh law results indicated that the extrinsic contributions to the dielectric and piezoelectric responses of quenched BF–BT?xmol%Mn ceramics were larger than the unquenched ceramics. These results presented that the quenched BF–BT?xmol%Mn ceramics were promising candidates for high‐temperature piezoelectric devices.  相似文献   

12.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

13.
It is well recognized that a widely wavelength‐tunable mid‐infrared (MIR) fiber laser plays an important role in the development of compact and efficient coherent sources in the MIR range. Herein, the optimizing Er/Ho ratio for enhancement of broadband tunable MIR emission covering 2.6‐2.95 μm in the Er3+/Ho3+‐codoped transparent borosilicate glass‐ceramic (GC) fibers containing NaYF4 nanocrystals under 980 nm excitation was investigated. Specifically, the obtained GC fibers with controllable crystallization and well fsd‐maintained structures were prepared by the novel melt‐in‐tube approach. Owing to the effective energy transfer between Er3+ and Ho3+ after crystallization, the 2.7 μm MIR emission was obviously enhanced and the emission region showed a notable extension from 2.6‐2.82 μm to 2.6‐2.95 μm after the addition of Ho3+. Importantly, we conducted a theoretical simulation and calculation related to the MIR laser performance, signifying that the GC fiber may be a promising candidate for MIR fiber laser. Furthermore, the melt‐in‐tube approach will provide a versatile strategy for the preparation of diverse optical functional GC fibers.  相似文献   

14.
Na‐ion conducting Na1+x[SnxGe2?x(PO4)3] (x = 0, 0.25, 0.5, and 0.75 mol%) glass samples with NASICON‐type phase were synthesized by the melt quenching method and glass‐ceramics were formed by heat treating the precursor glasses at their crystallization temperatures. XRD traces exhibit formation of most stable crystalline phase NaGe2(PO4)3 (ICSD‐164019) with trigonal structure. Structural illustration of sodium germanium phosphate [NaGe2(PO4)3] displays that each germanium is surrounded by 6 oxygen atom showing octahedral symmetry (GeO6) and phosphorous with 4 oxygen atoms showing tetrahedral symmetry (PO4). The highest bulk Na+ ion conductivities and lowest activation energy for conduction were achieved to be 8.39 × 10?05 S/cm and 0.52 eV for the optimum substitution levels (x = 0.5 mol%, Na1.5[Sn0.5Ge1.5(PO4)3]) of tetrahedral Ge4+ ions by Sn4+ on Na–Ge–P network. CV studies of the best conducting Na1.5[Sn0.5Ge1.5(PO4)3] glass‐ceramic electrolyte possesses a wide electrochemical window of 6 V. The structural and EIS studies of these glass‐ceramic electrolyte samples were monitored in light of the substitution of Ge by its larger homologue Sn.  相似文献   

15.
In this work, silica powders and transparent glass‐ceramic materials containing LaF3:Eu3+ nanocrystals were synthesized using the low‐temperature sol‐gel technique. Prepared samples were characterized by TG/DSC analysis as well as X‐ray diffraction and IR spectroscopy. The transformation from liquid sols toward bulk powders and xerogels was also examined and analyzed. The optical behavior of prepared Eu3+‐doped sol‐gel samples were evaluated based on photoluminescence excitation (PLE: λem = 611 nm) and emission (PL: λexc = 393 nm, λexc = 397 nm) spectra as well as luminescence decay analysis. The series of luminescence lines located within reddish‐orange spectral scope were registered and identified as the intra‐configurational 4f6‐4f6 transitions originated from Eu3+ optically active ions (5D0 → 7FJ, J = 0‐4). Moreover, the R/O‐ratio was also calculated to estimate the symmetry in local framework around Eu3+ ions. The luminescence spectra and double‐exponential character of decay curves recorded for fabricated nanocrystalline sol‐gel samples (τ1(5D0) = 2.07 ms, τ2(5D0) = 8.07 ms and τ1(5D0) = 0.79 ms, τ2(5D0) = 9.76 ms for powders and glass‐ceramics, respectively) indicated the successful migration of optically active Eu3+ ions from amorphous silica framework to low phonon energy LaF3 nanocrystal phase.  相似文献   

16.
The improved dielectric properties and voltage‐current nonlinearity of nickel‐doped CaCu3Ti4O12 (CCNTO) ceramics prepared by solid‐state reaction were investigated. The approach of A′‐site Ni doping resulted in improved dielectric properties in the CaCu3Ti4O12 (CCTO) system, with a dielectric constant ε′≈1.51×105 and dielectric loss tanδ≈0.051 found for the sample with a Ni doping of 20% (CCNTO20) at room temperature and 1 kHz. The X‐ray photoelectron spectroscopy (XPS) analysis of the CCTO and the specimen with a Ni doping of 25% (CCNTO25) verified the co‐existence of Cu+/Cu2+ and Ti3+/Ti4+. A steady increase in ε′(f) and a slight increase in α observed upon initial Ni doping were ascribed to a more Cu‐rich phase in the intergranular phase caused by the Ni substitution in the grains. The low‐frequency relaxation leading to a distinct enhancement in ε′(f) beginning with CCNTO25 was confirmed to be a Maxwell‐Wagner‐type relaxation strongly affected by the Ni‐related phase with the formation of a core‐shell structure. The decrease of the dielectric loss was associated with the promoted densification of CCNTO and the increase of Cu vacancies, due to Ni doping on the Cu sites. In addition, the Ni dopant had a certain effect on tuning the current‐voltage characteristics of the CCTO ceramics. The present A′‐site Ni doping experiments demonstrate the extrinsic effect underlying the giant dielectric constant and provides a promising approach for developing practical applications.  相似文献   

17.
Ferromagnetic glass‐ceramics are an important kind of thermoseed material for hyperthermia treatments. In order to investigate the applications of glass‐ceramics in magnetic hyperthermia, P2O5‐Fe2O3‐CaO‐SiO2 (PFCS) glass‐ceramics with different compositions were prepared by the sol‐gel method. The crystal phase, magnetic properties, induction heating ability, and cytotoxicity of the as‐prepared glass‐ceramics were investigated. The results show that all the samples exhibit low cytotoxicity and good induction heating ability. Moreover, it was found that the phosphorus content affected the crystal phase component of the sample, and thus influenced the induction heating ability. Results of the magnetic hyperthermia experiments showed that the PFCS glass‐ceramic samples induced significant cell death of the LoVo cancer cells. The highest cell death rate for sample B2P7 was more than 95%, which suggests good application prospects in the field of hyperthermia therapy.  相似文献   

18.
Tantalum pentoxide (Ta2O5) nanoparticles with the sizes in the range of 20–50 nm were prepared via a chemical route in which the oleic acid (OLEA) was adopted as the surfactant for the synthesis process. X‐ray diffraction (XRD) revealed the as‐synthesized Ta2O5 transforms from amorphous to hexagonal and orthorhombic structures at the temperatures of 700°C and 750°C, respectively, illustrating the suppression of recrystallization temperature of Ta2O5 due to the particle size reduction. UV‐curable nanocomposites containing the Ta2O5 nanoparticles and acrylic matrix were also prepared. Thermogravimetry analysis (TGA) found an about 10–20°C improvement on the 5% weight‐loss thermal decomposition temperatures (Tds). Dielectric measurement showed that the dielectric constant of nanocomposite increases with the increase in the filler loading without severe deterioration of dielectric loss. The increment of dielectric constants was ascribed to the addition of high‐dielectric inorganic fillers as well as the presence of interfacial polarization at the organic/inorganic interfaces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
β‐NaGdF4:Yb3+,Er3+ upconversion (UC) microcrystals were prepared by a facile hydrothermal process with the assistance of ethylene diamine tertraacetic acid (EDTA). The β‐NaGdF4 UC microcrystal morphology was controlled by changing the doses of EDTA and NaF. Uniform hexagonal structure can be obtained at the 2 mmol EDTA and 9‐10 mmol NaF. The UC emissions of β‐NaGdF4:Yb3+,Er3+ microcrystals were tuned by the variation of Eu3+ doping level (0%‐5%), where the red/green intensity ratio decreased with the Eu3+ concentration increase. It was found on the base of rate equations that with the Eu3+ doping, the energy back transfer process 2H11/2/4S3/2 (Er3+) → 4I13/2 (Er3+) decreased. In addition, an energy‐transfer process from 4F7/2 (Er3+) to 5D1 (Eu3+) and a cross relaxation process of 7H9/2 (Er3+) + 5D0 (Eu3+) → 4F7/2 (Er3+) + 5D2 (Eu3+) were proposed and verified by rate equations, which dominated the energy‐transfer mechanism between Er3+ and Eu3+, resulted in the spectra tuning of β‐NaGdF4:Yb3+,Er3+. The results suggested that the color tuning of β‐NaGdF4:Yb3+,Er3+,Eu3+ UC microcrystals would have potential applications in such fields as flat‐panel displays, solid‐state lasers, and photovoltaics.  相似文献   

20.
Ni2+/Yb3+/Er3+/Tm3+ codoped transparent glass‐ceramics (GCs) containing both hexagonal β‐YF3 and spinel‐like γ‐Ga2O3 dual‐phase nanoparticles (NCs) are synthesized by melt‐quenching and subsequent heating procedures. Two techniques of transmission electron microscopy (TEM) nanoanalytics and optical spectroscopy are conjugated to understand the distribution of the rare‐earth ions (REs) and transition metals (TMs) in the nanostructured GCs. It is found that the REs are located predominantly in β‐YF3, whereas the TMs in γ‐Ga2O3 NCs. As a result, energy transfer (ET) between the REs and TMs is considerably suppressed due to the large spatial separation (> 3 nm), but it is enhanced between the REs partitioned in the β‐YF3 NCs. This has important implications for intended and demanding photoluminescence functions. For example, an ultrabroadband near‐infrared (NIR) emission in the wavelength region of 1000‐2000 nm covering the entire telecommunications window is observed for the first time. Meanwhile, intense upconversion (UC) emissions covering the 3 primary colors and locating in the first biological window can be also recorded under excitation by a single pump source at 980 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号