首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible ultrafine SiC fibers with superior high-temperature stability and excellent oxidation resistance are regarded as one of the most promising materials for high-temperature applications. However, excess oxygen and carbon in the ultrafine SiC fibers limit their thermal stability due to decomposition of the SiCxOy phase. In the present work, flexible ultrafine nearly stoichiometric polycrystalline SiC fibers were fabricated by combining the electrospinning technique and polymer-derived ceramic method. The ultrafine SiC fibers exhibited superior high-temperature stability and oxidation resistance. The retention rates of tensile strength were 90.0 %, 94.2 % and 86.4 % after heat treatment in argon at 1800 °C, 1900 °C and 2000 °C, respectively. TG results of the fibers showed little weight loss of only 1.52 % at 1900 °C in Ar and the weight gain of only 4.1 % up to 1500 °C in air. Such improved thermal stability was achieved through sintering at high temperature for elimination of excess oxygen and carbon with Al doped as the sintering aid to restrain the grain coarsening. The ultrafine SiC fibers still exhibited excellent flexibility without obvious damage when they were heated by the butane blowtorch flame of about 1100 °C in air. Furthermore, the infrared thermography illustrated that the ultrafine SiC fiber membrane also had good thermal insulation performance. The outstanding mechanical properties and thermal stability of ultrafine SiC fibers suggest their potential applications at the high temperature and harsh environment.  相似文献   

2.
Continuous ceramic fibers with ultrahigh-temperature stability are in high demand for applications in advanced space propulsion and thermal protection systems. In this study, SiC nanograins stabilized Si–C–B–N ceramic fibers were prepared using chemically modified polyborosilazane via a polymer-derived method. The fabricated Si–C–B–N fibers exhibited a rather high tensile strength of approximately 1.8 GPa and a high strength retention of approximately 90% after annealing at 2100°C for 0.5 h under a nitrogen atmosphere. The ultrahigh-temperature stability can be contributed to the presence of thermodynamically stable SiC nanograins and the encapsulation of SiC nanograins by the BN(C) phase and amorphous Si–C–B–N matrix. Our work offers a convenient strategy for preparing Si-based ceramic fibers with ultrahigh-temperature stability at beyond 2000°C.  相似文献   

3.
Silicon carbide (SiC) coating on carbon fibers was realized based on in situ low‐temperature gas–solid reaction processing in which carbon reacted with Si vapor at the temperature of 1200°C–1300°C. X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FE‐SEM), and energy‐dispersive spectroscopy (EDS) analysis showed that the SiC coating was uniform and crystallized by beta‐SiC. The oxidation resistant properties of the SiC‐coated carbon fibers were significantly improved according to isothermal oxidation measurement. The initial oxidation temperature of the SiC‐coated carbon fibers was about 200°C higher than that of the raw carbon fibers. The SiC‐coating carbon fibers treated at 1250°C possessed higher antioxidant property than the one treated at 1300°C.  相似文献   

4.
Third‐generation SiC fibers [High Nicalon S (HNS) and Tyranno SA3 (Ty–SA3)] were studied by X‐ray diffraction and transmission electron microscopy (TEM) after heat treatments in neutral atmosphere up to 1900°C. The microstructural changes in both materials were determined using a modified Hall–Williamson method introducing an anisotropy parameter taking into account the high density of planar defects. HNS fibers exhibit significant modifications in the coherent diffraction domains (CDD) size, which drastically increases from 24 to 70 nm in the range 1600°C–1900°C. TEM observations support these results. The residual microstrain values decrease from 0.0015 to 0.0005 between 1750°C and 1850°C. Similarly, the anisotropy parameter significantly decreases in the same temperature range. Concerning the Ty–SA3 fibers, no evolution in terms of CDD size and residual microstrain was observed. However, the anisotropy parameter decreases at 1800°C. TEM observations did not show noticeable grain growth. The grain size was found to be larger than the CDD and the planar defects density to decrease at high temperature. In both types of fibers, the CDD sizes are similar for the highest temperature heat treatments.  相似文献   

5.
The polymer-derived SiC fibers have broad application prospects in the fields of aerospace, nuclear industry and high-tech weapon. Oxygen plays an essential role in adjusting the composition, structure and tensile strength of SiC fibers. Our studies have found that introducing too much oxygen during air curing process will form the skin-core structure in nearly stoichiometric polycrystalline SiC fibers. In order to reveal the formation mechanism of the skin-core structure, gradient oxygen was introduced into the fibers. The morphologies, phase distributions and defects of the fibers were well characterized. By strictly controlling the introduction of oxygen, the polycrystalline product fiber exhibits intragranular fracture behavior and excellent high-temperature resistance. The retention rate of its tensile strength can reach up to 91% and 61% after exposure at 1800 °C for 1 h and 10 h, respectively. The present results give valuable insights into the structural optimization of the nearly stoichiometric polycrystalline SiC fibers.  相似文献   

6.
The tensile behavior of ZrB2‐SiC‐graphite composite was investigated from room temperature to 1800°C. Results showed that tensile strength was 134.18 MPa at room temperature, decreasing to 50.34 MPa at 1800°C. A brittle‐ductile transition temperature (1300°C) of ZrB2‐SiC‐graphite composite was deduced from experimental results. Furthermore, the effect of temperature on the fracture behavior of ZrB2‐SiC‐graphite composite was further discussed by microstructure observations, which showed that tensile strength was controlled by the relaxation of thermal residual stress below 1300°C, and was affected by the plastic flow during 1300°C and 1400°C. At higher temperature, the tensile strength was dominated by the changes of microstructures.  相似文献   

7.
A single‐source precursor for the preparation of HfC‐SiC ceramics was synthesized via a Grignard reaction using bis(cyclopentadienyl)hafnium(IV) dichloride, trans‐1,4‐dibromo‐2‐butene, and (chloromethyl)trimethylsilane as raw materials. The composition, structure, pyrolysis process and high‐temperature behavior of the precursor were investigated. The results show that the precursor with a backbone comprising Hf–C, Si–C and CH=CH groups exhibits good solubility in common solvents, such as tetrahydrofuran, dimethylbenzene, and chloroform. Pyrolysis of the precursor at 1000°C yielded a microcrystalline HfC phase with a ceramic yield of 63.86 wt%. The pyrolytic products at 1600°C were HfC–SiC nanocomposite ceramics, which exhibited good thermal stability up to 2400°C. The formation of a (Hf,Si)C solid‐solution would be beneficial for densification during the sintering process. The non‐oxygen structure, high ceramic yield, homogeneous composition and excellent high‐temperature behavior of the pyrolytic products make the as‐prepared precursor a promising material for the preparation of high‐performance ultra‐high‐temperature ceramics.  相似文献   

8.
Structural evolution and crystallization behavior between 600°C and 1450°C during the preparation of bulk SiC/B4C/C nanocomposites by the pyrolysis of CB‐PSA preceramic were investigated. The CB‐PSA preceramic converts into carbon‐rich Si–B–C ceramics up to 800°C. Structural evolution and crystallization of Si–B–C materials could be controlled by adjusting the pyrolytic temperature. The Si–B–C ceramics are amorphous between 800°C and 1000°C. Phase separation and crystallization begin at 1100°C. The crystallization of β‐SiC takes place at 1100°C and B4C nanocrystallites generate at 1300°C. The sizes of β‐SiC and B4C nanocrystals increase with the pyrolytic temperature rising. In addition, the boron‐doping effect on structural evolution was studied by comparing the crystallization and graphitization behavior of Si–B–C ceramics and the corresponding Si–C materials. Boron is helpful for the growth of β‐SiC nanocrystals and the graphitization, but harmful for the nucleation of β‐SiC crystallites.  相似文献   

9.
The reaction between iridium and SiC in the 1000°C–1900°C temperature range was studied in details. The rate of this reaction was found to depend not only on temperature, but also on the grain sizes of the initial reagents, oxygen impurities in SiC, as well as the Ir: SiC ratio. The use of fine-grained initial reagents accelerates the reaction, whereas oxygen impurities in SiC powders slow it down. For the Ir: SiC ratio = 1:1, the IrSi silicide phase became dominant at 1400°C and remained the main phase at temperatures up to 1900°C. For the 3:1 ratio, Ir2Si was the main phase at 1900°C. It was suggested that stabilization of this phase is due to the quenching effect. No Si-rich silicide phases were detected in the 1000°C–1900°C temperature range. The coefficients of thermal expansion of silicide phases were determined by high-temperature X-ray diffraction analysis.  相似文献   

10.
ABSTRACT

The joining of SiC ceramic using the liquid polyvinylphenylsiloxane at the high temperature was investigated. The characteristic evolution of polyvinylphenylsiloxane during heating process, shear strength and microstructure of joint were especially discussed. The results show that active groups Si-OH and CH=CH2 of polyvinylphenylsiloxane through cross-linking at low temperature (200°C) form the macromolecular structure, crosslinked polyvinylphenylsiloxane possess the higher ceramic yield and structure stability at high temperature. Shear strength of SiC joints increase with the joining temperature from 1000 to 1200°C, and then decrease when the joining temperature reaches to 1350°C. Combination with microstructure of fine grains of SiO2 and SiC dispersion in the Si–O–C ceramic of the join layer and new phase SiC formation on the joint interface through the gas–solid reactions, the shear strength of joint achieves the maximum at 1200°C. The defects of joint increase with temperature higher than 1200°C, and the shear strength of joint begin to decrease.  相似文献   

11.
In this study, continuous SiC-ZrB2 composite ceramic fibers were synthesized from a novel pre-ceramic polymer of polyzirconocenecarbosilane (PZCS) via melt spinning, electron beam cross-linking, pyrolysis, and finally sintering at 1800°C under argon. The ZrB2 particles with an average grain size of 30.7 nm were found to be uniformly dispersed in the SiC with a mean size of 59.7 nm, as calculated using the Scherrer equation. The polycrystalline fibers exhibit dense morphologies without any obvious holes or cracks. The tensile strength of the fibers was greater than 2.0 GPa, and their elastic modulus was ~380 GPa. After oxidation at 1200°C for 1 hour, the strength of the fibers did not decrease despite a small loss of elastic modulus. Compared to the advanced commercial SiC fibers of Tyranno SA, the fibers exhibited improved high-temperature creep resistance in the temperature range 1300-1500°C.  相似文献   

12.
Using micrometer‐ and nano‐sized SiC particles as reinforcement phase, two ZrB2‐SiC composites with high strength up to 1600°C were prepared using high‐energy ball milling, followed by hot pressing. The composite microstructure comprised finer equiaxed ZrB2 and SiC grains and intergranular amorphous phase. The temperature dependency of flexure strength related to the initial particle size of SiC. In the case of micrometer‐sized SiC, the high‐temperature strength was improved up to 1500°C compared to room‐temperature strength, but the strength degraded at 1600°C, with strength values of 600‐770 MPa. In the case of nano‐sized SiC, the enhanced high‐temperature strength was observed up to 1600°C, with strength values of 680‐840 MPa.  相似文献   

13.
The influence of high-temperature argon heat-treatment on the microstructure and room- temperature in-plane tensile properties of 2D woven CVI and 2D unidirectional MI SiC/SiC composites with Hi-Nicalon?-S SiC fibers was investigated. The 2D woven CVI SiC/SiC composites were heat-treated between 1200 and 1600 °C for 1- and 100-hr, and the 2D unidirectional MI SiC/SiC composites between 1315 and 1400 °C for up to 2000 hr. In addition, the influence of temperature on fast fracture tensile strengths of these composites was also measured in air. Both composites exhibited different degradation behaviors. In 2D woven CVI SiC/SiC composites, the CVI BN interface coating reacted with Hi-Nicalon?-S SiC fibers causing a loss in fast fracture ultimate tensile strengths between 1200 and 1600 °C as well as after 100-hr isothermal heat treatment at temperatures > 1100 °C. In contrast, 2D unidirectional MI SiC/SiC composites showed no significant loss in in-plane tensile properties after the fast fracture tensile tests at 1315 °C. However, after isothermal exposure conditions from 1315° to 1400°C, the in-plane proportional limit stress decreased, and the ultimate tensile fracture strain increased with an increase in exposure time. The mechanisms of strength degradation in both composites are discussed.  相似文献   

14.
Precursor polycarbosilane containing acetylenic and Si? H group (PCAS) has been successfully prepared by the reaction of dilithioacetylene with methyl dichlorosilane, and characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and 29Si‐NMR. Thermogravimetric analysis curve in nitrogen showed the temperature of 5 wt % weight losses (Td5) was 613°C, while the ceramic yield of PCAS was 88% at 1000°C. Pyrolysis behavior and structure evolution of the cured PCAS were studied by means of X‐ray diffraction, Raman, scanning electron microscope‐energy dispersive X‐ray spectrometer, transmission electron microscope (selected area electron diffraction and high resolution transmission electron microscope), and elemental analysis. The polymer to ceramic conversion was completed at 1600°C and the results revealed that the ceramic consisted of β‐SiC and α‐SiC. The composition of the ceramic was near‐stoichiometric with molar ratio of Si/C (1.02 : 1) except rare and localized free carbon inclusions. The SiC ceramics exhibited high thermo‐oxidation resistance at elevated temperatures in air atmosphere. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41335.  相似文献   

15.
Silicon oxycarbide glasses can be produced over a range of Si–O–C compositions by the controlled pyrolysis of polymer precursors. We present measurements of the thermal conductivity of a silicon oxycarbide glass after two different heat treatments and two Si–O–C nano‐composites, hot‐pressed at 1600°C, up to 1000°C and compare them to fused silica, amorphous carbon, and SiC. The temperature dependence of their thermal conductivities is similar to other amorphous materials. The presence of low volume fractions of nanoparticles of hafnia (4.5 v/o) or zirconia (7.4 v/o) dispersed within the amorphous matrix only modifies the conductivity slightly, consistent with a simple Maxwell model, and does not affect the temperature dependence of the thermal conductivity above room temperature.  相似文献   

16.
6H–SiC single crystals and two types of SiC fibers, Hi‐Nicalon type S and Tyranno SA3, have been irradiated with 4‐MeV Au3+ up to 2 × 1015 cm?2 (4 dpa) at room temperature, 100°C and 200°C. These fibers are composed of highly faulted 3C–SiC grains and free intergranular C. Stacking fault linear density and grain size estimations yield, respectively, 0.29 nm?1 and 26–36 nm for the Hi‐Nicalon type S fibers and 0.18 nm?1 and 141–210 nm for the Tyranno SA3 fibers. Both transmission electron microscopy and surface micro‐Raman spectroscopy reveal the complete amorphization of all the samples when irradiated at room temperature and 100°C and a remaining crystallinity when irradiated at 200°C. The latter observations reveal a multi‐band irradiated layer consisting in a partially amorphized band near the surface and an in‐depth amorphous band. Also, nanocrystalline SiC grains with high stacking fault densities can be found embedded in amorphous SiC at the maximum damage zone of the Hi‐Nicalon type S fibers irradiated at 200°C.  相似文献   

17.
A series of high temperature polymer electrolyte membranes were fabricated based on imidazolium poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) using methylimidazole (MeIm) and triethoxysilylpropyldihydroimidazole (SiIm) as quaternization reagents via the SN2 nucleophilic substitution. Meanwhile SiIm was also employed as a crosslinking agent and the crosslinked Si–O–Si network was constructed through a hydrolysis procedure of SiIm in an acid medium. Compared with the PPO‐100%MeIm membrane without the crosslinking structure, the imidazolium siloxane crosslinked PPO‐x%SiIm‐y%MeIm membranes exhibited increased acid doping contents, enhanced dimensional stabilities, improved mechanical properties and higher conductivities. The PPO‐30%SiIm‐70%MeIm/(198 wt% phosphoric acid) membrane displayed a conductivity of 0.08 S cm?1 at 180 °C without humidifying and a tensile strength of 6.4 MPa at room temperature. © 2019 Society of Chemical Industry  相似文献   

18.
Novel high‐performance copolyimide (co‐PI) fibers containing benzimidazole and benzoxazole ring in the main chain were prepared by a two‐step spinning via the poly(amic acid)s. Effects of the incorporated benzimidazole and benzoxazole units on the micro‐structure and properties of co‐PI fibers were investigated. Fourier transform infrared (FTIR) results indicated that hydrogen bonding is formed in the co‐PI fibers. The co‐PI fibers exhibited discernible crystallization peaks at 14°~15° and 23°~26° (2θ), showing crystalline‐like structure. Moreover, the packing type of benzimidazole‐imide units determined the macromolecules packing of co‐PIs. It was amazedly found that the co‐PI fibers exhibited higher tensile strength and initial modulus than those of corresponding homo‐PI fibers, reaching tensile strength of 2.2–2.6 GPa, initial modulus of 99.1–113.2 GPa. The results of dynamic mechanical analysis (DMA) indicated co‐PI2 fiber had a positive Tg deviation due to the presence of strong intermolecular hydrogen bonding between benzimidazole‐imide and benzoxazole‐imide units, which maybe lead to the effective stress transfer between benzimidazole‐imide units and benzoxazole‐imide units. In addition, the obtained PI fibers exhibited excellent thermal properties with the 10% weight loss temperatures under N2 in the range of 574–585°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42001.  相似文献   

19.
The behavior of an oxide fiber at elevated temperatures was analyzed before and after thermal exposures. The material studied was a mullite fiber developed for high‐temperature applications, CeraFib 75. Heat treatments were performed at temperatures ranging from 1200°C to 1400°C for 25 hours. Quantitative high‐temperature X‐ray analysis and creep tests at 1200°C were carried out to analyze the effect of previous heat treatment on the thermal stability of the fibers. The as‐received fibers presented a metastable microstructure of mullite grains with traces of alumina. Starting at 1200°C, grain growth and phase transformations occurred, including the initial formation of mullite, followed by the dissociation of the previous alumina‐rich mullite phase. The observed transformations are continuous and occur until the mullite phase reaches a state near the stoichiometric 3/2 mullite. Only the fibers previously heat treated at 1400°C did not show further changes when exposed again to 1200°C. Overall, the heat treatments increased the fiber stability and creep resistance but reduced the tensile strength. Changes observed in the creep strain vs. time curves of the fibers were related to the observed microstructural transformations. Based on these results, the chemical composition of the stable mullite fiber is suggested.  相似文献   

20.
《Ceramics International》2019,45(13):16008-16014
The polycarbosilane (PCS) as a ceramic precursor is mainly synthesized using an autoclave and is modified via the reflux method to add organometallic compounds. However, in this study, a zirconium source was added to PCS in order to improve the heat resistance of the polymer-derived SiC fibers using an easy and simple blending method. The zirconium-added PCS solution was spun via electrospinning and converted to Si–Zr–C–O fiber felts at 1300 °C through the processes of curing and pyrolysis. In order to investigate their thermal-degradation behavior, the zirconium added SiC fiber felts were heat-treated at 1500 °C or 1600 °C for 1 h in an Ar atmosphere. The results indicated that the aforementioned felts retained blackness and flexibility, whereas SiC fiber felts deteriorated and were discolored to gray. Moreover, the results confirmed that the growth of crystalline size (approximately calculated via XRD analysis) was significantly inhibited by the presence of zirconium. Therefore, zirconium acetylacetonate as a zirconium source was cross-linked with the PCS structure via the blending method and its role for heat resistance was exhibited at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号