首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2020,46(6):7861-7870
This study proposes a combustion-based ceramic matrix composite processing technique intended on single-step in situ deposition of single-crystal SiC nanowires (SiCnw) on the surface of carbon fibers (Cf) and formation of SiCnw–reinforced SiC matrix. This was accomplished by Ta-catalyzed combustion of poly-(C2F4)-containing reactive mixtures with pre-mixed chopped Cf. Depending on the combustion conditions, carbon fiber surface is subjected either to formation of diffusion layers, ceramic particle incrustation or growth of continuous arrays of carbon-coated single-crystal SiCnw with a nearly defect-free lattice, 10–50 nm diameter and 15–20 μm length. Thermodynamics, phase and structure formation mechanisms are explored, and the optimal conditions are outlined for reproducible Cf/in situ SiCnw dual reinforcement of SiC-based ceramics. Hot pressing at 1500 °C produced Cf/in situ SiCnw-reinforced ceramic SiC–TaSi2 specimens with a relative density of 97%, 19 GPa Vickers hardness, 3-point flexural strength σ = 420 ± 70 MPa and fracture toughness K1C = 12.5 MPa m1/2.  相似文献   

2.
Ceramic matrix composites are typically prepared by a costly, time-consuming process under severe conditions. Herein, a cost-effective C/SiC composite was fabricated from a silicon gel-derived source by Joule heating. The β-SiC phase was generated via carbothermal reduction, and the carbon fabric showed a well-developed graphitic structure, promoting its thermal and anti-oxidation stabilities. Owing to the excellent dielectric loss in carbon fabric, SiC and SiO2 as well as the micropore structure of the ceramic matrix, the absolute electromagnetic interference shielding (EMI) effectiveness (SSE/t) reached 948.18 dB?cm2?g-1 in the X-band, exhibiting an excellent EMI SE. After oxidation at 1000 °C for 10 h in the air, the SSE/t of the composite was only reduced to 846.02 dB?cm2?g-1. The C/SiC composite promises the efficient fabrication of high-temperature resistant materials for electromagnetic shielding applications.  相似文献   

3.
In this study, the high-content SiCnw reinforced SiC ceramic matrix composites (SiCnw/SiC CMC) were successfully fabricated by hot pressing β-SiC and sintering additive (Al2O3-Y2O3) with boron nitride interphase modification SiCnw. The effects of sintering additive content and mass fraction (5–25 wt%) of SiCnw on the density, microstructure, and mechanical properties of the composites were investigated. The results showed that with the increase of sintering additives from 10 wt% to 12 wt%, the relative density of the SiCnw/SiC CMC increased from 97.3% to 98.9%, attributed to the generated Y3Al5O12 (YAG) liquid phase from the Al2O3-Y2O3 that promotes the rearrangement and migration of SiC grains. The comprehensive performance of the obtained composite with 15 wt% SiCnw possessed the optimal flexural strength and fracture toughness of 524 ± 30.24 MPa and 12.39 ± 0.49 MPa·m1/2, respectively. Besides, the fracture mode of the composites with 25 wt% SiCnw content revealed a pseudo-plastic fracture behavior. It concludes that the 25 wt% SiCnw/SiC CMC was toughened by the fiber pull-outs, debonding, bridging, and crack deflection that can consume plenty of fracture energy. The strategy of SiC nanowires worked as a main bearing phase for the fabrication of SiC/SiC CMC providing critical information for understanding the mechanical behavior of high toughness and high strength SiC nanoceramic matrix composites.  相似文献   

4.
To tailor the fiber–matrix interface of SiC nanowires-reinforced SiC (SiCnw/SiC) ceramic matrix composites (CMCs) for improved mechanical properties, SiC nanowires were coated with BN and pyrolytic carbon (PyC) compound coatings prepared by the dip-coating process in boric acid and urea solution and the pyrolysis of phenolic resin. SiCnw/SiC CMC with PyC/BN interfaces were fabricated by reactive melt infiltration (RMI) at 1680°C for 1 h. The influences of phenolic resin content on the microstructure and mechanical properties of the CMC were investigated. The results showed that the flexural strength and fracture toughness reach the maximum values of 294 MPa and 4.74 MPa m1/2 as the phenolic resin content was 16 and 12 wt%, respectively. The displacement–load curve of the sample exhibited a gradient drop with increasing phenolic resin content up to 12 wt%. The results demonstrated that the PyC/BN compound coatings could play the role of protecting the SiCnw from degradation as well as improving the more moderate interfacial bonding strengths during the RMI.  相似文献   

5.
《Ceramics International》2017,43(18):16736-16743
The evaluation and optimization of EMW absorbing properties have been widely studied, but little research focused on EMI shielding properties predicted by complex permittivity. Based on the transmission-line theory, shielding effectiveness (SE) of a dielectric composite was evaluated by the reflection coefficient (Г) and transmission coefficient (T) which were calculated by the complex permittivity. SiCf/SiCN composites containing different content of CVI SiCN matrix are attractive for their tunable dielectric properties, which may vary from EMW absorption to EMI shielding. Therefore, SiCf/SiCN composites are typical dielectric composites used for experimental verification, and the results indicate that the dielectric composites without CVI SiCN phase have good EMW absorbing properties, while they exhibit good EMI shielding effectiveness with CVI SiCN phase. This work builds a relationship between the EMI shielding effectiveness and the complex permittivity, and obtains the optimized complex permittivity for excellent EMI shielding effectiveness.  相似文献   

6.
《Ceramics International》2020,46(6):7719-7732
In this account, RGO-SiCnw/SiBCN composite ceramics were fabricated using polymer derived ceramic (PDC) combined with chemical vapor infiltration (CVI) technology. Dielectric property of as-obtained RGO-SiCnw/SiBCN composite ceramics was significantly enhanced thanks to established conductive pathway through overlapped nanoscale SiCnw and micro-sized RGO. The minimum RC of composite ceramics with 0.5 wt% GO and 2.29 wt% SiCnw at thickness of 3.6 mm reached -42.02 dB with corresponding effective absorption bandwidth (EAB) of 4.2 GHz. As temperature rose from 25 to 400 °C, permittivity increased with enhanced charge carrier density and then it decreased due to oxidation process of RGO from 400 to 600 °C. The minimum reflection coefficient (RC) was recorded as -39.13 dB and EAB covered the entire X-band at 600 °C. EMW absorption ability was evaluated after high-temperature oxidation experiment under protective effect of wave-transparent Si3N4 coating. RGO-SiCnw/SiBCN composite ceramics maintained outstanding EMW absorption ability with minimum RC of -10.41 dB after oxidation at 900 °C, indicating RGO-SiCnw/SiBCN composite ceramics with excellent EMW absorption characteristic even at high temperatures and harsh environments.  相似文献   

7.
Effective electromagnetic interference (EMI) shielding requires materials with high permittivity. The current study reports 3D printed polymer-derived SiOC ceramics (PDC) modified with SiC nanowires (SiCnw) exhibiting both high real and imaginary parts of permittivity within X-band. SEM results indicated that a large number of pores and cracks exist in the SiOC, and twinned SiCnw were uniformly grown among them along with the existence of graphite microcrystals when the sintering temperature was 1500 ℃. The real part of permittivity ranged from 16.6 to 28.9 while the imaginary part from 31.7 to 34.2 in X-band. The EMI total shielding effectiveness (SET) of the ceramics could reach 34.7 dB with absorption loss (SEA) of 29.3 dB and reflection loss (SER) of 5.4 dB. Meanwhile, the 3D printed PDC-SiOC ceramics at 900 ℃ sintering temperature possess certain mechanical properties with the magnitude of compressive strength being 12.57 MPa.  相似文献   

8.
《Ceramics International》2017,43(12):8873-8878
Film formed by carbon nanotubes is usually called carbon nanotube film (CNTf). In the present study, CNTf fabricated by floating catalyst method was used to prepare CNTf/SiC ceramic matrix composites by chemical vapor infiltration (CVI). Mechanical and electrical properties of the resulting CNTf/SiC composites with different CVI cycles were investigated and discussed, and the results revealed that the CNTf has a good adaptability to CVI method. Tensile test demonstrated an excellent mechanical performance of the composites with highest tensile strength of 646 MPa after 2 CVI cycles, and the strength has a decline after 3 CVI cycles for an excessively dense matrix. While, the elastic modulus of the composite increased with the CVI cycles and reached 301 GPa after 3 CVI cycles. Tensile fracture morphologies of the composites were analyzed by scanning electron microscope to study the performance change laws with the CVI cycles. With SiC ceramic matrix infiltrated into the CNTf, enhanced electrical conductivity of the CNTf/SiC composite compared to pure CNTf was also obtained, from 368 S/cm to 588 S/cm. Conductivity of the SiC matrix with free carbon forming in the CVI process was considered as the reason.  相似文献   

9.
《Ceramics International》2023,49(6):9130-9137
A SiC-nanowire-modified SiC–Si (SiCnw@SiC–Si) coating was prepared for carbon-fibre-reinforced carbon-matrix (C/C) composites using a two-step method based on thermal evaporation and gaseous silicon infiltration, and the effects of SiC nanowires on the oxidation and ablation behaviours of the coated samples were studied. Oxidation tests conducted at 1500 °C revealed that the weight loss of the SiC–Si-coated C/C composite was 15.85% after 6 h, whereas the SiCnw@SiC–Si-coated C/C composite experienced a significantly lower weight loss of 1.27% after 50 h. Ablation tests suggested that the mass and linear ablation rates of the SiCnw@SiC–Si-coated C/C composite were 0.05 mg/s and 0.09 μm/s, respectively; they were reduced by 78.26 and 92.74%, respectively, compared with those of the SiC–Si-coated C/C composite. Careful characterisation suggested that the network structure of the SiC nanowires in the SiC–Si phase can suppress crack propagation and firmly attach to the coating surface to enhance the interfacial adhesion between the coating and substrate, leading to improved anti-oxidation and anti-ablation properties. The SiCnw@SiC–Si coating could offer a technological foundation for preventing the oxidation and ablation of C/C composites in aerospace engineering.  相似文献   

10.
The SiCnws/SiC nanocomposites were in situ synthesized by using nickel carbon foam as catalyst and skeleton. This technique has a series of advantages including simple operation, low cost, and high efficiency. Due to the excellent microwave absorption and thermal properties of SiCnws, SiCnws/SiC nanocomposites possess excellent electromagnetic shielding performance with a high SET value of 38.3 dB and good thermal properties with thermal conductivity of 13.77 ± 0.098 wm−1k−1 at room temperature. Meanwhile, the bending strength of the nanocomposites is 110.9 ± 7.7 MPa. The friction coefficient of nanocomposites is about 0.26 with a wear speed of about 67 um3/s. Therefore, the nanocomposites integrate many advantages including lightweight (2.0 g/cm3), excellent electromagnetic shielding, good heat conduction, high strength, and wear resistance.  相似文献   

11.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

12.
Given the electromagnetic interference (EMI) and heat aggregation issue faced by electronic components, an urgent need exists to integrate EMI shielding and thermal conductivity in one material. Herein, a novel lightweight porous Ti3SiC2 ceramic with ordered structural arrangement was fabricated by using budget-friendly raw materials through ice template design and in-situ reaction synthesis. Leveraging the excellent conductivity and thermal conductivity of Ti3SiC2, a dual-functional advanced material with efficient EMI shielding and thermal management capabilities was obtained. At room temperature, porous Ti3SiC2 ceramics can achieve a shielding effectiveness of 35.44 dB and a thermal conductivity of 12.17 W/mK, with performance that can be tuned by porosity. In further, the porous Ti3SiC2 ceramic can work stably in thermal environments from room temperature to 700 °C or in corrosive environments rich in acid, alkali, and salts due to its excellent high temperature oxidation resistance and corrosion resistance. In view of the dual-functional characteristics and the stability of operation in harsh thermal environments, ordered porous Ti3SiC2 ceramics are promising for modern maritime and aerospace applications.  相似文献   

13.
To improve the thermal shock resistance of low carbon Al2O3-C refractories, SiC nanowires (SiCnw) containing SiCnw/Al2O3 composite reinforcement were introduced. The specific fracture energy of the Al2O3-C refractory matrix was obtained by statistical grid nano-indentation. The reinforcement mechanism of SiCnw/Al2O3 on thermal shock resistance of refractories was investigated. The results revealed that the matrix-specific fracture energy of A6 (6 wt% SiCnw/Al2O3 added) was 217 N/m, which was 58.4% higher than reference sample A0 (137 N/m) and 18.6% higher than MA6 (183 N/m, 6 wt% SiC/Al2O3 added). A6 showed the highest residual strength ratio of 49.8%, which was 114.7 % higher than A0 (23.2%) and 82.4 % higher than MA6 (27.3%). The components with different morphology in SiCnw/Al2O3 cluster, especially SiC nanowires, promote the generation of microcracks, crack multi-deflection, and branching, which toughen the matrix and improve the thermal shock resistance of refractories. In comparison to the literature, A6 showed a higher rising in residual strength ratio than those with higher graphite content (4 wt% and 20 wt%), which will greatly reduce the consumption of carbon-containing refractories and contribute to the reduction of CO2 emission.  相似文献   

14.
To improve the fracture properties of ZrB2-based composites, SiC nanowires (SiCnw) were introduced into the powder mixtures via an in-situ growth method and the composites were fabricated by hot pressing. Microstructure observations found that the SiCnw with a diameter of less than 100?nm presented twisted morphology and homogeneously distributed among ceramic particles. It was also found that the SiCnw could inhibit the grain growth of ZrB2-based composites. Compared to that of composites without SiCnw, the fracture toughness and the work of fracture for the composites with SiCnw were 7.17?MPa?m1/2 and 205?J?m?2, which increased by 61.1% and 91.6%, respectively. The main enhancing mechanisms could be associated with the obvious crack deflection, crack branching and pull out of SiCnw. The SiCnw could refrain the crack opening and reduce the stress intensity in front of crack tips, which absorbed more energy and improved the fracture properties.  相似文献   

15.
《Ceramics International》2023,49(4):6368-6377
Nonmagnetic ceramics are ideal microwave absorbing materials used in high-temperature and oxidizing environments. However, low-frequency absorbing properties of this material are rarely reported because low-frequency absorbing requires nonmagnetic materials to have much higher permittivity. In this research, a series of three-dimensional architectures formed by SiC nanowires with different microstructures felt were fabricated to address this issue. The morphology of the SiCnw (linear, bamboo-shaped, and worm-like) dominated by the VLS growth mechanism can be manipulated by the silicon vapor concentration, which is governed by the vaporization temperature of the mixed silicon source (Si and SiO2) in different sintering processes. The spontaneously overlapped bamboo-shaped SiC nanowires in these felt enhance the permittivity and conductivity loss and produce multiple scattering effects on the incident EM waves, thus increasing the low-frequency wave absorption ability. The RLmin of the bamboo-shaped SiCnw felt reaches ?44.3 dB at 3.85 GHz with the corresponding EAB of 0.64 GHz (3.6–4.24 GHz) at a thickness of 3.5 mm. The density of the SiCnw felt is as low as 0.022 g/cm3 due to the high porosity (99.3%) of 3D networks, which fulfills lightweight requirements and highly efficient electromagnetic wave absorption.  相似文献   

16.
SiC/SiC composites prepared by liquid silicon infiltration (LSI) have the advantages of high densification, matrix cracking stress and ultimate tensile strength, but the toughness is usually insufficient. Relieving the residual microstress in fiber and interphase, dissipating crack propagation energy, and improving the crystallization degree of interphase can effectively increase the toughness of the composites. In this work, a special SiC particles and C (SiCP +C) double-cladding layer is designed and prepared via the infiltration of SiCP slurry and chemical vapor infiltration (CVI) of C in the porous SiC/SiC composites prepared by CVI. After LSI, the SiC generated by the reaction of C with molten Si combines with the SiCP to form a layered structure matrix, which can effectually relieve residual microstress in fiber and interphase and dissipate crack propagation energy. The crystallization degree of BN interphase is increased under the effects of C-Si reaction exotherm. The as-received SiC/SiC composites possess a density of 2.64 g/cm3 and a porosity of 6.1%. The flexural strength of the SiC/SiC composites with layered structure matrix and highly crystalline BN interphase is 577 MPa, and the fracture toughness reaches up to 37 MPa·m1/2. The microstructure and properties of four groups of SiC/SiC composites prepared by different processes are also investigated and compared to demonstrate the effectiveness of the SiCP +C double-cladding layer design, which offers a strategy for developing the SiC/SiC composites with high performance.  相似文献   

17.
In this paper, a low‐temperature densification process of Al–Si alloy infiltration was developed to fabricate C/SiC–Ti3Si(Al)C2, and then the microstructure, mechanical, and electromagnetic interference (EMI) shielding properties were studied compared with those of C/SiC–Ti3SiC2 and C/SiC–Si. The interbundle matrix of C/SiC–Ti3Si(Al)C2 is mainly composed of Ti3Si(Al)C2, which can bring various microdeformation mechanisms, high damage tolerance, and electrical conductivity, leading to the high effective volume fraction of loading fibers and electrical conductivity of C/SiC–Ti3Si(Al)C2. Therefore, C/SiC–Ti3Si(Al)C2 shows excellent bending strength of 556 MPa, fracture toughness 21.6 MPa·m1/2, and EMI shielding effectiveness of 43.9 dB over the frequency of 8.2–12.4 GHz. Compared with C/SiC–Si and C/SiC–Ti3SiC2, both the improvement of mechanical properties and EMI shielding effectiveness can be obtained by the introduction of Ti3Si(Al)C2 into C/SiC, revealing great potential as structural and functional materials.  相似文献   

18.
In this work, SiC nanowires and graphitic carbon (GC) including 2D reduced graphene oxide and graphene-liked ribbons modified polymer derived SiCN (SiC/GC-SiCN) porous ceramic monoliths were prepared via catalyst assisted single-source-precursor derived ceramic route. The inclusion of absorbents (e.g. graphitic carbon and SiC nanowires) significantly improved the electrical conductivity of the materials from 1.77 × 10?8 S/cm (pristine SiCN) to 0.56 S/cm. In turn, the electromagnetic interference shielding effectiveness (EMI SE) of the ceramic increased significantly from 4.0 dB to 19.2 dB. At the highest absorbent content, the SiC/GC-SiCN ceramics exhibit a high absorption power of 0.3 nW and an SE of 48.5 dB at thickness of 2 mm, which means more than 99.998 % of the EM wave is blocked. This work finds new avenue for the design of advanced electromagnetic shielding materials possessing strong absorption capability.  相似文献   

19.
Silicon carbide fibre reinforced silicon carbide matrix composites (SiCf/SiC) are known as materials with high-performance mechanical properties for the aerospace industry. Microwave-enhanced (ME) chemical vapour infiltration (CVI) heating of ceramic matrix composites is potentially an energy efficient production technique capable of yielding near fully dense SiCf/SiC composites in a much shorter time span. This paper reports on the output of computational analysis of electromagnetic (EM) and thermal characteristics of the ME CVI process occurring with thin circular SiC fibre preform in a Labotron microwave system from SAIREM. Computer simulation is performed with the use of the finite-difference time-domain technique implemented in QuickWave computational environment. Multiple puzzling phenomena observed in the earlier experimental work are illuminated in the present study and the causes for the formation of microwave-induced temperature fields are clarified. With the use of the developed EM model, resonant and non-resonant frequencies of the Labotron system for different temperatures of the processed samples are analysed to explain the differences and variability in heating rates. This showed that when microwave processing of small SiC samples, energy coupling is extremely sensitive to frequency: a change of the reflection coefficient from 0.05 (absorbing) to 0.75 (reflective) could be made by a drift as small as 0.003–0.005 GHz, respectively, indicating the importance of scaling the microwave cavity to the sample size and the ability to precisely control the frequency of the microwave source. Moreover, energy coupling is temperature-dependent: low reflections produces very high heating rates (greater than 550 ℃ min-1); the opposite is true for high reflections where heating rates are significantly slower. Temperature fields in the SiC fibre preforms are computed with the coupled EM-thermal model at different frequencies. It is shown that while being highly non-uniform in the beginning of the process, temperature patterns evolve to being fairly homogeneous by its end. Overall, the results suggest a means for better control of the equipment to pave the way to more efficient, controlled, and repeatable implementations of the ME CVI technology to produce high quality SiCf/SiC composites.  相似文献   

20.
《Ceramics International》2023,49(1):450-460
A SiCnw@SiC foam with highly efficient microwave absorption (MA) performance was successfully synthesized based on Vapor-Solid (V–S) growth mechanism. SiC nanowire (SiCnw) and SiC foam skeleton efficiently form a double network coupling structure, which gives additional interface polarization and dielectric loss for the SiC foam, significantly enhancing the MA capacity of the foam. In this study, the SiCnw@SiC foam has a minimum reflection loss (RLmin) of ?86.31 dB and an effective absorption bandwidth (EAB) of 12.55 GHz in room-temperature environment. However, the MA performance of SiCnw@SiC foam decreases with increasing temperature, which may be due to the thickening of the SiO2 layer in the SiCnw at high temperature. At 600 °C, it has no effective absorption bandwidth, while at 1000 °C, the EAB and RLmin were 0.6 GHz and ?13.04 dB, respectively. As the temperature reaches 1000 °C, the defects in the material further increase, leading to a recovery in the MA performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号