首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For fiber‐optic mid‐infrared bio‐ and chemical‐sensing, Ge–Sb–Se glass optical fibers are more attractive than Ge–As–Se because of: (i) lowered toxicity and (ii) lower phonon energy and hence transmission to longer wavelengths, with potential to reach the spectral “fingerprint region” for molecular sensing. There is little previous work on Ge–Sb–Se fibers. Here, fibers are fabricated from two glass compositions in the GexSb10Se90?x atomic (at.) % series. Both glass compositions are of similar mean‐coordination‐number, lying in the overconstrained region, yet of different chemical composition: stoichiometric Ge25Sb10Se65 at. % and non‐stoichiometric Ge20Sb10Se70 at. %. Thermal analysis on bulk glasses has previously shown that the former exhibited the maximum glass stability of the series. However, during fiber‐drawing of Ge25Sb10Se65 at. %, the preform tip is found to undergo surface‐devitrification to monoclinic GeSe2 alone, the primary phase, no matter if the preform is an annealed, as‐melted rod or annealed, extruded rod. The heating rate of the preform‐tip to the fiber‐drawing temperature is estimated to be up to ~100°C/min to ~490°C. Lower heating rates of 10°C/min using thermal analysis, in contrast, encourage crystallization of both Sb2Se3 and GeSe2. The non‐stoichiometric: Ge20Sb10Se70 at. % composition drew successfully to low optical loss fiber, no matter whether the preform was an annealed, as‐melted rod or annealed, extruded rod.  相似文献   

2.
The Faraday effects of Ge‐Ga‐Sb(In)‐S serial chalcogenide glasses were investigated at the wavelengths of 635, 808, 980, and 1319 nm, respectively. The compositional dependences were analyzed and associated influencing factors including the absorption edge, the concentration of Sb3+/In3+ ions, and the wavelength dispersion of refraction index were discussed. 80GeS2·20Sb2S3 composition glass was found to have the largest Verdet constant (V=0.253, 0.219, 0.149, and 0.065 min·G?1·cm?1 for wavelengths 635, 808, 980, and 1319 nm, respectively) in these glasses, which is larger than that of commercial diamagnetic glasses (Schott, SF 6, V=0.069 min·G?1·cm?1@633 nm, for example). Sb3+ ions with high polarizability possessing s2‐sp electron jumps involving 1S01P1, 3P0,1,2 transitions are responsible for large Verdet constant, and Becquerel rule is proved to be an effective guidance for estimating the Verdet constant and further optimizing the compositions in chalcogenide glasses.  相似文献   

3.
Frequency conversion using nonlinear optical (NLO) crystals is widely used in advanced photonic technologies to produce coherent light in the spectral regions where the available laser sources are missing. Isotropic glasses usually do not show second order nonlinear processes like second harmonic or difference frequency generation (SHG, DFG) except for temporarily induced anisotropy under external stimuli. Here, we show that a HgI2–Ga2S3–GeS2 homogeneous glass exhibits a strong intrinsic SHG response comparable with that of the well-known NLO single crystal LiNbO3. The origin of this extremely rare phenomenon seems to be noncentrosymmetric bent HgI2 molecules embedded in a sulfide glassy host. Taking into account the unique properties of chalcogenide glasses (wide IR transmission, low phonon density, unlimited ability to be modified changing the appropriate glass properties, fiber drawing and thin layer design), the observed phenomenon opens up the possibility of creating fundamentally new devices for mid-IR photonics.  相似文献   

4.
La2O3–Ga2O3M2O5 (M = Nb or Ta) ternary glasses were fabricated using an aerodynamic levitation technique, and their glass‐forming regions and thermal and optical properties were investigated. Incorporation of adequate amounts of Nb2O5 and Ta2O5 drastically improved the thermal stabilities of the glasses against crystallization. Optical transmittance measurements revealed that all the glasses were transparent over a wide wavelength range from the ultraviolet to the mid‐infrared. The refractive indices of the glasses increased and the Abbe number decreased upon substituting Ga2O3 with Nb2O5, and the decrease in the Abbe number was significantly suppressed when Ta2O5 was incorporated into the glass. As a result, excellent compatibility between high refractive index and lower wavelength dispersion was realized in La2O3–Ga2O3–Ta2O5 glasses. Analysis based on the single‐oscillator Drude–Voigt model provided more systematical information and revealed that this compatibility was due to an increase in the electron density of the glass.  相似文献   

5.
We explored the structure and physical properties of Ge15Sb20Se65‐xSx (with x = 0, 16.25, 32.5, 48.75, and 65) glasses in order to screen the best compositions for the applications in photonics, since the laser damage thresholds in Se‐based glasses are too low although their optical nonlinearities are high. We found that, linear and nonlinear refractive index of the glasses decreased, but glass transition temperature Tg, optical bandgap Eg and the laser damage threshold increased with increasing S content. We further employed Raman scattering and high‐resolution X‐ray photoelectron spectra to probe the structure of the glasses. Through the analysis of the evolution of the different structural units in the glasses, it was concluded that, the heteropolar bonds (Ge–Se/S, Sb–Se/S) were dominated in these glasses. With the increase in chalcogen Se/S ratio, the number of the Se‐related chemical bonds (Ge–Se, Sb–Se and Se–Se) increased and that of S‐related chemical bond (Ge–S, Sb–S and S–S) decreased gradually, and Ge was prior to bond with S rather than Se. The elemental substitution thus had negligible effect on the glass structure. The change of the physical properties was mainly due to the difference of the strength of the chemical bonds between S–Ge(Sb) and Se–Ge(Sb).  相似文献   

6.
A series of Cs2BF6:Mn4+ (B = Ge, Si, Ti, Zr) red phosphors were synthesized by a precipitation-cation exchange route. The phase purity, morphology, and constituent were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties were investigated by photoluminescence (PL) spectra and high-resolution PL. Temperature-dependent PL examination at the range of both 273-573 K and 10-300 K was performed to investigate the emission mechanism of Mn4+ in these fluorides. The intensity for both zero-phonon lines (ZPLs) and vibration coupled emission of Mn4+ in these four systems with different crystal structures was investigated systematically. These phosphors present bright red emission under blue light (467 nm) illumination, among which Cs2GeF6:0.1Mn4+ shows the highest emission intensity with ultrahigh quantum efficiency of 94%. The white light-emitting diodes (WLEDs) fabricated with this sample, blue InGaN chips and commercial YAG:Ce3+ phosphor exhibited high luminous efficacy beyond 100 lm/w with high color rendering index (~88.6) and low color temperature (~3684 K).  相似文献   

7.
A systematic investigation of the optical and structural properties of chalcogenide glasses in Ge–Sn–Se ternary system is presented. We have found a threshold behavior of optical property, namely, existence of transitional composition of the Ge–Sn–Se glasses, with progressive replacement of Se by Sn. Calculation of mean coordination number indicates that the transition‐like feature of optical property is associated with the evolution of chemical ordering of the Ge–Sn–Se network. Analysis of Raman spectra of the glasses explains that the interaction between Se–Se bonds, Sn(Se1/2)4 tetrahedra, and Sn–Sn homopolar bonds is the origination of such optical phenomenon.  相似文献   

8.
Sr2‐xBaxSi(O,N)4:Eu2+ (SBxSON:Eu2+) oxynitridosilicate phosphors were prepared via incorporation of N3?, Eu2+, and Ba2+ ions into Sr2SiO4 (SSO) lattices. X‐ray diffraction patterns of the prepared powders revealed that SBxSON:Eu2+ was a solid‐solution form of SSO. An increase in x values caused a phase transition and an expansion of the unit cell. The photoluminescence excitation (PLE) spectra of SBxSON:Eu2+ were broad, covering the ultraviolet range to the visible range. Corresponding PL emission spectra strongly depended on the excitation wavelengths and consisted of two emission bands, one in the green‐blue region (A‐band) and the other in the red region (B‐band), which were assigned to Eu(I) and Eu(II), respectively. The B‐band resulted from a dramatic red‐shift of the green emission band assigned to Eu(II) of SSO:Eu2+, revealing that the nitridation process preferentially affected the Eu(II) sites. This behavior was explained by crystal field splitting, the fluorescence decay time, and thermal quenching. The Ba2+ substitution caused evolution of the PL spectra, and its effects on the spectra were discussed under consideration of ionic size and covalence.  相似文献   

9.
Solid solution of Ca9‐xMgxBi(VO4)7 in powder and ceramic forms are obtained by solid‐state reactions. Details of their crystal structures are determined for x = 0.25 and x = 0.5 by synchrotron radiation diffraction and the Rietveld method. The refinement has confirmed that Mg2+ is replacing Ca2+ in M5 position of a polar (S.G. R3c) β‐Ca3(PO4)2‐type structure. Thermal analysis, dielectric and second harmonic generation experiments in broad temperature regions have proved this polar structure is formed for 0 ≤ x ≤ 0.7. Magnesium for calcium substitution enhances optical nonlinear activity of Ca9‐xMgxBi(VO4)7 in 0 < x ≤ 0.5. Two phase transitions have been found, one of which from polar to centrosymmetric phase is accompanied by dielectric constant peak of ferroelectric type. The other is upper on temperature, marked with smaller dielectric anomaly, and goes between 2 centrosymmetric phases. Temperatures of the phase transition only slightly depend on x, the first being near 1050 K, the second near 1100 K. Electric conductivity quickly rises with temperature in the polar phase. At higher temperature it changes according to the Arrhenius law with small activation energy, Ea ~ 0.7 eV for bulk conductivity and Egb ~ 2.0‐2.5 eV for grain boundary conductivity. The analysis of bulk and grain boundary conductivities agrees with Ca2+‐ion fast transport in ceramics. The bulk conductivity slowly decreases with magnesium content, the grain boundary conductivity does not notably depend on the composition.  相似文献   

10.
Developing new phosphors used for ratiometric optical thermometers has attracted broad attention recently. According to the recent research, the phosphate SrIn2(P2O7)2 with regard to the structural rigidity has been adopted as the host of Tm and Dy activators behaving the super-stable white emission. Herein, Tm, Dy, Eu tri-doped phosphors were prepared to investigate the interaction of three different activators and their coupling sensitivity to temperature. Based on concentration control and energy transfer among three activators, the tunable emission, including the idea warm white, has been obtained. In the case of increasing temperature, the emission intensities of Dy3+ and Eu3+ partially decrease, whereas the Tm3+ fluorescence extremely keeps increasing to 155.4% of 473 K compared with that of room temperature. This phenomenon can be defined the negative thermal-quenching. It is believed that the back energy transfer (BET) from Dy3+ and that from Eu3+ to Tm3+ help the negative thermal-quenching of Tm3+ to a certain extent. Both cation occupation and structural rigidity obviously affect the BET efficiency. In the new phosphors, the fluorescence intensity ratios of Tm3+ and Eu3+ (blue/red) and (blue/orange) of Tm3+/Dy3+ are closely related to temperature and vary linearly over a wide temperature range, which can be regarded as an important index of temperature sensor. The SI1.92P: T0.01D0.01E0.06 shows excellent temperature sensitivity and recyclability. The current results show that SrIn2(P2O7)2: Tm, Dy, Eu phosphors can be regarded as candidate materials for optical thermometry.  相似文献   

11.
A series of novel Bi3+‐doped Ba3Sc4O9 phosphors were synthesized through the solid‐state reaction. Their photoluminescence, decay curves, and thermal quenching properties were investigated in detail. The Ba3Sc4O9:Bi3+ phosphors could be efficiently excited in the ultraviolet and near‐ultraviolet region (300‐400 nm), and the photoluminescence properties possess an obvious site‐selected excitations phenomenon. When excited at the ultraviolet light (320‐360 nm), the phosphors present a green or a bluish green emission, and when excited at the near‐ultraviolet light (370‐390 nm), the phosphors always show a yellow emission. The emission spectra excited at the different wavelength can be decomposed into four components, which accord with the four cationic sites in the structure of Ba3Sc4O9. The influence of the Bi3+ concentration on the photoluminescence properties is also investigated. Upon excitation at 330 and 377 nm, the Ba3Sc4O9:Bi3+ both have good thermal quenching properties; their emission intensity of the peak at 150°C both exceed 60% of the initial value. The above results indicate that the Ba3Sc4O9:Bi3+ phosphor is a promising candidate to provide green or yellow components for UV or near‐UV LEDs.  相似文献   

12.
Due to their excellent optical properties, glasses are used for various applications ranging from smartphone screens to telescopes. Developing compositions with tailored Abbe number (Vd) and refractive index at 587.6 nm (nd), two crucial optical properties, is a major challenge. To this extent, machine learning (ML) approaches have been successfully used to develop composition–property models. However, these models are essentially black boxes in nature and suffer from the lack of interpretability. In this paper, we demonstrate the use of ML models to predict the composition-dependent variations of Vd and nd. Further, using Shapely additive explanations (SHAP), we interpret the ML models to identify the contribution of each of the input components toward target prediction. We observe that glass formers such as SiO2, B2O3, and P2O5 and intermediates such as TiO2, PbO, and Bi2O3 play a significant role in controlling the optical properties. Interestingly, components contributing toward increasing the nd are found to decrease the Vd and vice versa. Finally, we develop the Abbe diagram, using the ML models, allowing accelerated discovery of new glasses for optical properties beyond the experimental pareto front. Overall, employing explainable ML, we predict and interpret the compositional control on the optical properties of oxide glasses.  相似文献   

13.
A novel polyurethane (PU)‐SiO2 core–shell particle dispersion was prepared by an acid‐catalyzed sol–gel process using cationic–nonionic PU particle as template. Results of average sizes, polydispersity index, and transmission electron microscope indicated that tetramethylorthosilicate were first diffused to the surface of PU particles, then occurring hydrolysis–condensation reaction to form core–shell particles. Antireflection coating formulation was prepared by as‐prepared core–shell particle dispersion and SiO2 sol binder. After dip‐coating in the formulation, antireflection coating was formed on glass surface by calcination. Scanning electron microscopy images showed that pores had been formed inside coating after removing PU template particles, and the coating surface could be almost fully closed. In addition, ultraviolet–visible spectrophotometer analysis showed that the maximum transmittance of antireflection glasses can be as high as 98.6% at 548 nm. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45762.  相似文献   

14.
Ba5RZr3Nb7O30(R = La, Nd, Sm) lead‐free relaxor ferroelectrics were prepared by a standard solid‐state reaction process, and the influence of A and B site ion occupation on the dielectric characteristics especially the relaxor nature were investigated systematically. Tetragonal tungsten bronze structure with space group P4/mbm was determined for all compositions, ion cross distribution by Ba2+ and R3+ in A1 site was observed, while A2 site was only occupied by Ba2+. Selected area electron diffraction patterns confirmed the existence of incommensurate superlattice modulation. Furthermore, temperature and frequency dependences of the dielectric properties showed a broad permittivity peak with strong frequency dispersion, following well the Vogel‐Fulcher relationship. The maximum dielectric constant temperature increased gradually with decreasing A1 site ion size. Slim P‐E hysteresis loops were obtained at room temperature for all compositions. Meanwhile, micro ferroelectric domains were observed in Ba5SmZr3Nb7O30. For Ba4R2Zr4Nb6O30 and Ba5RZr3Nb7O30 (R = Nd, Sm), the transition from normal ferroelectric to relaxor behavior originates from the increased tA1, which is a result of cross distribution at A1 site. Compared with Ba5RTi3Nb7O30, Zr substitution at B site enhances the relaxor nature.  相似文献   

15.
This paper describes the preparation of a transparent glass‐ceramic from the SiO2‐K2O‐ZnO‐Al2O3‐TiO2 system containing a single crystalline phase, gahnite (ZnAl2O4). TiO2 was used as a nucleating agent for the heat‐induced precipitation of gahnite crystals of 5‐10 nm. The evolution of the ZnAl2O4 spinel structure through the gradual formation of Al‐O bonds was examined by infrared spectroscopy. The dark brown color of the transparent precursor glass and glass‐ceramic was eliminated using CeO2. The increase in transparency of the CeO2‐doped glass and glass‐ceramics was demonstrated by UV‐visible absorption spectroscopy. EPR measurements confirmed the presence of Ce3+ ions, indicating that CeO2 was effective in eliminating the brown color introduced by Ti3+ ions via oxidation to Ti+4. The hardness of the glass‐ceramic was 30% higher than that of the as‐prepared glasses. This work offers key guidelines to produce hard, transparent glass‐ceramics which may be potential candidates for a variety of technological applications, such as armor and display panels.  相似文献   

16.
Self‐activated compound serving as host sensitizer for trivalent rare‐earth ions has been intensively studied, but only in more recent years did it extend to non‐rare‐earth ions. In the present work, it is demonstrated for the first time that the parity‐forbidden Mn4+ red emission can be effectively enhanced by utilizing the strong parity‐allowed absorption of O2?–W6+ charge transfer band and the energy transfer from “WO2” groups to Mn4+ ions. Hopefully, the presently studied self‐activated Na2WO2F4 can be developed as stable color converter for field‐emission displays.  相似文献   

17.
The electronic, structural, and optical properties of 2 red phosphors, Rb2HfF6:Mn4+ and Cs2HfF6:Mn4+, are evaluated using the first‐principles and crystal field theory methods. The calculated trigonal splitting of the Mn4+ orbital triplets perfectly matches the experimental excitation spectra. The structural and electronic properties of the mixed compound RbCsHfF6 are also studied theoretically. In the mixed compound, the inversion center symmetry around the Hf site is removed. This symmetry lowering may result in an increase in the Mn4+ 2E→4A2 zero phonon line (ZPL) intensity, which is very weak in the 2 end members. This finding may be of interest for increasing the phosphor luminosity. It is believed that such a mechanism of local site symmetry lowering by preparing solid solutions may be used for other systems as well, to gain ZPL intensity and perhaps to minimize thermal losses, eventually leading to improved phosphor materials.  相似文献   

18.
Fluoro-sulfo-phosphate (FPS) glass is of current interest as potential material for laser application due to its good glass-forming ability, thermal, and chemical stability as well as the complicated local environment for incorporated species. Herein, the physical and luminescent properties of Er3+ and Yb3+/Er3+-doped FPS glasses vs S/F ratio are investigated comprehensively. The low melting temperature (750°C) leads to fewer ingredients evaporation and easier operation. The sulfate addition depolymerizes the structure of FPS glasses, leading to either monotonic or nonmonotonic variations of physical properties, while no deterioration in thermal and limited one in chemical stability is caused. The addition of sulfate also modifies the local structure around optical active species and thus, leading to higher emission cross section (1.52 × 10−20 cm2), effective linewidth (68.4 nm), figure of merit (5.61 × 10−23 s cm2), gain bandwidth (102.44 × 10−27 cm3), and energy-transfer microparameters (51.87 × 10−39 cm6/s), implying high possibility to serve as 1.5 μm laser application.  相似文献   

19.
Super full dense (TbxY1?x)3Al5O12 (x=0.5‐1.0) ceramics with optical grade (pore‐free) were successfully produced by solid‐state reaction between Tb4O7 and Al2O3 raw powders. Transparent sintered bodies were obtained by sintering at 1720°C for 5 hours in vacuum furnace. By additional HIP treatment, optical scattering centers were effectively removed, and finally the optical quality of the sintered bodies was improved to optical grade. Optical loss of the obtained samples at 1064 nm was approximately 0.1%/cm, and optically inhomogeneous parts were not observed inside the materials. Gaussian mode laser beam quality was not deteriorated after passing through the sample. Transmitted wavefront distortion inspected by interferometry was as excellent as λ/12. Verdet constant increased with an increase of Tb content in the garnet composition. When x=1.0, the Verdet constant was 307, 196, and 60 rad T?1 m?1 for 532, 633, and 1064 nm, respectively, at each measuring wavelength. These values were about 1.5 times higher than that of the commercially available TGG (Tb3Ga3O12) crystal. Insertion loss of the produced (Tb0.6Y0.4)3Al5O12 and TAG ceramics at 1064 nm was 0.01 and 0.05 dB, respectively, and extinction ratio was 39.5 and 40.3 dB, respectively. These properties were superior to that of the commercial high‐quality TGG single crystal (insertion loss: 0.05 dB, extinction ratio: 35.0 dB).  相似文献   

20.
Non-contact temperature sensors based on the fluorescence intensity ratio (FIR) have been widely investigated owing to their high sensitivity and reliable real-time monitoring. Herein, the SiO2-coated LiY(MoO4)2@SiO2:Er3+,Yb3+ phosphor was investigated as an optical thermometry material, which was synthesized using the conventional solid state reaction and coated by a facile wet chemical route. The effect of surface modification on FIR was systematically characterized by structural analyses and spectral measurements and the temperature-dependent up-conversion FIR was investigated from 303 to 603 K under a 980 nm laser excitation. The results showed that the FIR value was thermally stable and the SiO2 coating led to a higher FIR sensitivity as well as a higher saturation threshold. This work would pave a way to design interesting optical thermometry materials in up-conversion phosphors with better properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号