首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocaloric effect and energy storage property are tuned in the Ba1-xCexTi0.99Mn0.01O3 ceramics prepared by the solid state reaction method. The ceramics with lower Ce content (x?=?0.005, 0.015) show a better ΔT and ΔT/ΔE response. The ceramics with higher Ce content (x?=?0.030, 0.040, 0.045) represent the broader ΔT peaks (50?K–60?K), and the higher energy storage density and efficiency. The largest electrocaloric response (ΔTmax?=?1.22?K, ΔT/ΔE?=?0.41?K mm/kV) is found in the Ba0.995Ce0.005Ti0.99Mn0.01O3 ceramics, which is comparable or even higher than that of the most isovalent substituting BaTiO3-based ceramics reported before. The maximum energy storage density 0.11?J/cm3 (E?=?30?kV/cm) is obtained for the Ba0.970Ce0.030Ti0.99Mn0.01O3 ceramics, with high efficiency of 65–88% over a wide temperature range of 72?K. This work may open more opportunities to design high electrocalaric and energy storage performance lead-free systems from the viewpoint of the heterovalent and size mismatch substitution.  相似文献   

2.
Understanding Li‐ion migration mechanisms and enhancing Li‐ion transport in Li2ZrO3 (LZO) is important to its role as solid absorbent for reversible CO2 capture at elevated temperatures, as ceramic breeder in nuclear reactors, and as electrode coating in high‐voltage lithium‐ion batteries (LIBs). Although defect engineering is an effective way to tune the properties of ceramics, the defect structure of LZO is largely unknown. This study reports the defect structure and electrical properties of undoped LZO and a series of cation‐doped LZOs: (i) depending on their charge states, cation dopants can control the oxygen vacancy concentration in doped LZOs; (ii) the doped LZOs with higher oxygen vacancy concentrations exhibit better Li+ conductivity, and consequently faster high‐temperature CO2 absorption. In fact, the Fe (II)‐doped LZO shows the highest Li‐ion conductivity reported for LZOs, reaching 3.3 mS/cm at ~300°C that is more than 1 order of magnitude higher than that of the undoped LZO.  相似文献   

3.
Recently, ferroelectric and antiferroelectric ceramic materials have gained a lot of interest for the development of environment-friendly highly-efficient electrocaloric refrigeration and energy-storage devices. In this work, lead-free Ba1−xLixTiO3 ceramics with x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05 were synthesized by the conventional solid-state reaction method, and the effect of Li doping on dielectric, leakage current, ferroelectric, electrocaloric, and energy storage properties of BaTiO3 ceramics was systematically investigated. The XRD and Raman studies confirmed that the structure of Ba1−xLixTiO3 remains tetragonal as for BaTiO3. The Li substitution shifted the phase transition (TC) of BaTiO3 slightly towards the lower temperature side. Significant drop in leakage current was observed with an addition of Li content. The maximum values of the electrocaloric effect (ΔT), electrocaloric responsivity, and coefficient of performance were found to be 1.44 K, 0.24 × 10−6 K m/V, and 5.75, respectively, for = 0.04 at an applied field of 60 kV/cm near the Curie temperature. The maximal value of energy storage density was found to be 0.42 J/cm3 with an energy storage efficiency of 60% for x = 0.05. Our results suggested that lead-free Ba1−xLixTiO3 ceramic material is a promising candidate for potential applications in solid-state refrigeration technology and high-efficiency energy storage devices.  相似文献   

4.
Reduction of Ti4+ to Ti3+ was found in boron‐doped BaTiO3 ceramics when we sintered the samples at very low temperature (>850°C) in 5%H2/Ar. Such reduction did not occur in pristine BaTiO3 ceramic. The methods such as UV–vis spectroscopy, luminescence spectroscopy, and X‐ray photoelectron spectroscopy confirmed the reduction by showing the presence of Ti3+. The results of Ti–K‐edge X‐ray absorption near‐edge structure measurement (XANES) indicated that boron doping changed the geometry of Ti‐oxygen in BaTiO3 to some extent. It was likely that some boron ions stayed at interstitial sites of BaTiO3 lattice and acted as donors, which might trigger the reduction. The reduced boron‐doped BaTiO3 were semiconducting and had very low room‐temperature resistivity (<100 Ω m). However, different from the n‐type rare‐earth‐doped BaTiO3 ceramics, they did not display positive temperature coefficient resistance (PTCR) behavior.  相似文献   

5.
In order to solve the problems of acceptor/donor individual doping in Li2TiO3 system and clarify the superiority mechanism of co‐doping for improving the Q value, Mg + Nb co‐doped Li2TiO3 have been designed and sintered at a medium temperature of 1260°C. The effects of each Mg/Nb ion on structure, morphology, grain‐boundary resistance and microwave dielectric properties are investigated. The substitution of (Mg1/3Nb2/3)4+ inhibits not only the diffusion of Li+ and reduction in Ti4+, but also the formation of microcracks in ceramics, which promotes the enhancement of Q value. The experiments reveal that Q × f value of Li2TiO3 ceramics co‐doped with magnesium and niobium is 113 774 GHz (at 8.573 GHz), which is increased by 113% compared with the pure Li2TiO3 ceramics. And the co‐doped ceramics have an appropriate dielectric constant of 19.01 and a near‐zero resonance frequency temperature coefficient of 13.38 ppm/°C. These results offer a scientific basis for co‐doping in Li2TiO3 system, and the outstanding performance of (Mg + Nb) co‐doped ceramics provides a solid foundation for widespread applications of microwave substrates, resonators, filters and patch antennas in modern wireless communication equipments.  相似文献   

6.
《Ceramics International》2017,43(13):9998-10005
Fe-doped BaTiO3 ceramics produced from powders prepared by solid state reaction at various processing parameters (temperature, time) were investigated and discussed. X-ray diffraction analysis confirmed the existence of the tetragonal phase in BaTi1−xFexO3−x/2 (x=0.005) ceramics. The microstructural characterization reveals that a low calcination temperature leads to a higher densification of the bulk samples at around 96% relative density with average grain sizes ~6 µm. The oxidation state of the metal ions in the sintered samples analysed by means of X-ray photoelectron spectroscopy showed the presence of Ti4+2p3/2 and Ti4+2p1/2 peaks in Fe-doped BaTiO3 and the lack of Ti3+ ions, which confirms the compositional quality of these ceramics. The electron paramagnetic resonance measurements proved the incorporation of Fe ions as Fe3+ in the BaTiO3 lattice.  相似文献   

7.
A new series of Li3Ba2La3(1-x)Y3x(MoO4)8 microwave dielectric ceramics were prepared by a conventional solid-state reaction method. The Rietveld refinement results further confirm that Li3Ba2La3(1-x)Y3x(MoO4)8 belongs to a monoclinic system with space group C2/c. Scanning electron microscopy results reveal that Li3Ba2La3(1-x)Y3x(MoO4)8 ceramics can be well sintered at a low sintering temperature. In addition, the permittivity (εr) of Li3Ba2La3(1-x)Y3x(MoO4)8 ceramics was found to decrease gradually with increasing substitution content of Y3+, while the quality factor (Qxf) and temperature coefficient of resonant frequency (τf) increase with x monotonously. The x?=?0.4 ceramic sintered at 700?°C for 4?h possesses optimum microwave dielectric properties of εr ~ 14.4, Qxf ~ 14,994?GHz (at 9.0?GHz) and τf ~?+?6.9?ppm/°C. Particularly, no chemical reaction between the matrix phase and Ag metal suggests that the Li3Ba2La1.8Y1.2(MoO4)8 ceramic might be a promising candidate for low-temperature co-fired ceramic applications.  相似文献   

8.
《Ceramics International》2023,49(3):4119-4128
Li2CO3 is a promising additive to reduce the sintering temperature for (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 (BCZT) ceramics, however, the solubility of Li2CO3 in water and the high volatility of Li2O at elevated temperatures make the processing and densification of BCZT-Li2CO3 ceramics (known as BCZT-L) challenging. In our work, an optimized processing route was developed to obtain dense and flat BCZT-L ceramics made with 0–10 mol% of Li2CO3 and involving sintering at 1300 °C–1400 °C. The chemical and structural evolution of BCZT-L ceramics during sintering with and without a BCZT powder bed are comprehensively documented and the distribution of Li in the matrix has been observed through TOF-SIMS to explain the effects of Li doping on the piezoelectric properties. The d33 and kp of BCZT-L initially increased with Li content, but then decreased with excess Li. The decreased d33 and kp with excess Li is associated with Li aggregation in the BCZT matrix.  相似文献   

9.
The changes of Li+/vacancy arrangement in Li2+xTi3O7 with a ramsdellite-type structure upon topo-electrochemical Li+ insertion were investigated by the entropy measurement of reaction combined with the Monte Carlo simulation. The experimental entropy measurement was conducted by potentiometric and calorimetrical methods. The obtained experimental data were in good accordance with simulated results.The results indicated that the ordered Li+/vacancy arrangement appeared at the compositions of x ∼ 0.45 and ∼1.20, where the observed entropy of reaction humped. The ordering of Li/vacancy were also indicated at the composition x ∼ 0.24 and 1.16 in Li2+xTi3O7 by the Monte Carlo simulation which considers the most stable Li/vacancy arrangement in terms of Coulombic interaction. This substantial agreement between electrochemical behaviors and computational results confirmed that the formation of superstructure arising from Li/vacancy arrangement during the electrochemical reaction deeply related to the atomic level Coulombic interactions.  相似文献   

10.
The effect of fabrication method on the structure of (100 ? x) wt% BaTiO3 + x wt% La0.7Ba0.3MnO3 (BT + BLM) and (100 ? x) wt% Na, Bi, Sr‐doped PZT + x wt% La0.65Pb0.35MnO3 (PZTNB‐1 + PLM) magnetoelectric ceramics was studied. Profound interdiffusion of two interacting phases occurs in nearly all cases. The BT + BLM and PZTNB‐1 + PLM ceramics exhibit low piezoelectric parameters even with small manganite contents (10–20 wt%). The increased content of the magnetostrictive phase complicates the polarization process due to the high conductivity of La0.7Ba0.3MnO3 and La0.65Pb0.35MnO3. Doping of BaTiO3 and PZTNB‐1 with small additions of manganite components affects piezoelectric properties, thereby lowering efficiency of the resulting material.  相似文献   

11.
Acceptor‐doped BaTiO3 powders of formula: BaTi1?xHoxO3?x/2?δ/2: x = 0.0001, 0.001, 0.01, 0.03, and 0.07, were prepared by sol‐gel synthesis, fired at 800°C–1500°C and either quenched or slow‐cooled to room temperature. Electrical properties of ceramics depended on firing conditions, Ho content, and cooling rate. Pellets of all x values fired at 800°C–1000°C were insulating and, from the presence of OH bands in the IR spectra, charge balance appeared to involve co‐doping of Ho3+ and H+ ions without necessity for oxygen vacancy creation. At higher firing temperatures, OH bands were absent. Pellets fired at 1400°C in air and slow cooled were insulating for both low x (0.0001) and high x (0.07) but at intermediate x (0.001 and 0.01) passed through a resistivity minimum of 20–30 Ω cm at room temperature, attributed to the presence of Ti3+ ions; it is suggested that, for these dilute Ho contents, each oxygen vacancy is charge compensated by one Ho3+ and one Ti3+ ion. At higher x, charge compensation is by Ho3+ ions and samples are insulating. A second, more general mechanism to generate Ti3+ ions, and a modest level of semiconductivity, involves reversible oxygen loss at high temperatures.  相似文献   

12.
Large piezoelectric effect is achieved in Li‐doped Ba0.85Ca0.15Ti0.90Zr0.10O3(BCTZ) ceramics by use of tuning the phase boundaries. Rhombohedral–orthorhombic (R–O) and orthorhombic–tetragonal (O–T) multiphase coexistence is constructed in the ceramics by changing Li contents. The high piezoelectric constant d33 (493 pC/N) and large electrostrain (dSmax/dEmax = 931 pm/V) have been observed in the Li‐doped (Ba, Ca)(Ti, Zr)O3 ceramics at low sintering temperature (1350°C/2 h). The significant enhancement in materials properties is ascribed to the multiphase region around room temperature induced by Li‐doped effect.  相似文献   

13.
《Ceramics International》2023,49(2):1947-1959
Strontium and Yttrium-doped and co-doped BaTiO3 (BT) ceramics with the stoichiometric formulas BaTiO3, B1-xSrxTiO3, Ba1-xYxTiO3, BaTi1-xYxO3, Ba1-xYxTi1-xYxO3, and Ba1-xSrxTi1-xYxO3 (x = 0.075) noted as BT, BSrT, BYT, BTY, BYTY, and BSrTY have been synthesized through sol-gel method. X-ray diffraction (XRD) patterns of the prepared ceramics, calcined at a slightly low temperature (950 °C/3h), displayed that BT, BSrT, and BYT ceramics possess tetragonal structures and BTY, BYTY, and BSrTY have a cubic structure. The incorporation of the Ba and/or Ti sites by Sr2+ and Y3+ ions in the lattice of BaTiO3 ceramic and the behaviors of the crystalline characteristics in terms of the Y and Sr dopant were described in detail. The scanning electron microscopy (SEM) images demonstrated that the densification and grain size were strongly related to Sr and Y elements. UV–visible spectroscopy was used to study the optical behavior of the as-prepared ceramic samples and revealed that Sr and Y dopants reduce the optical band gap energy to 2.74 eV for the BSrTY compound. The outcomes also demonstrated that the levels of Urbach energy are indicative of the created disorder following the inclusion of Yttrium. The measurements of the thermal conductivity indicated the influence of the doping mechanism on the thermal conductivity results of the synthesized samples. Indeed, the thermal conductivity of BaTiO3 is decreased with Sr and Y dopants and found to be in the range of 085–2.23 W.m-1. K?1 at room temperature and decreases slightly with increasing temperature from 2.02 to 0.73-W.m-1. K?1. Moreover, the microstructure and grains distribution of the BT, BSrT, BYT, BTY, BYTY, and BSrTY samples impacted the compressive strength, hence; the compressive strength was minimized as the grain size decreased.  相似文献   

14.
《Ceramics International》2023,49(20):33057-33072
The temperature stability and temperature stability range of barium titanate-based pulse energy-storage ceramics were modified by Bi2O3 tailoring in (Ba0.98-xLi0.02Bix) (Mg0·04Ti0.96)O3 (x = 0, 0.025, 0.05, 0.075, 0.1) and (Ba1.03-1.5xLi0.02Bix) (Mg0·04Ti0.96)O3 (x = 0.125, 0.15, 0.2, 0.25) ceramics. Excellent pulse energy-storage performances of ceramic films are achieved via the new dual priority strategy of establishing cationic vacancies and forming a liquid phase. The dielectric constant plateau appears due to the cubic phase and space charges. Outstanding temperature stability, frequency stability and antifatigue performance are obtained in the ceramics, and their variations are all less than 15%. The comprehensive energy-storage properties with dual priority parameters of energy-storage density and efficiency of 3.13 J/cm3 and 91.71%, accompanied by an excellent pulse discharge energy density of 2.48 J/cm3, current density of 1313.23 A/cm2 and power density of 195.26 MW/cm3 are gained at x = 0.1. The perfect pulse energy-storage performances as well as ultrahigh stability are correlated with synergistic effects of multiphase coexistence, cubic phase, liquid-phase sintering, grain size, ceramic resistance, space charges and polar nanoregions. The comprehensive parameters indicate that the (Ba0·88Li0·02Bi0.1) (Mg0·04Ti0.96)O3 ceramics have potential application in high precision fields.  相似文献   

15.
BaTi1-xCaxO3-x [BTC100x] ceramics were synthesized via solid-state reaction method. Effect of Ca substitution on the structure, electrical and dielectric properties of BTC100x ceramics was systematically investigated. Calcined BTC100x powders were in tetragonal phase when x?≤?0.01, whereas transformed to cubic at x?>?0.01. Additionally, the diffraction peak (200) shifted to lower angles with increasing x, indicating increased unit cell volume. Meanwhile, Ba0.97Ca0.03TiO3 [BC3T] ceramic was prepared and studied, to compare with BaTi0.97Ca0.03O2.97 (BTC3). It was found that pure BaTiO3 [BT] and BC3T ceramics had the similar structural and dielectric properties, whereas BTC3 ceramic showed much difference,XRD patterns, Raman spectrum, impedance spectra and dielectric-temperature spectra provided strong evidence of Ca2+ substitution at Ti site in BT lattice. Finally, BTC100x ceramics were produced and dielectric properties were investigated. With increasing x, the Curie temperature decreased from 128?°C (BT) to 42?°C (BTC5).  相似文献   

16.
The point defects and the structural and dielectric properties of Dy-doped BaTiO3 ceramics prepared at 1400 °C were investigated. The solubility of Dy in the self-compensation mode was determined to be x = 0.07 for (Ba1−xDyx)(Ti1−xDyx)O3, and no EPR signals associated with the Dy3+ Kramers ion or the Ba and Ti vacancies were detected using the electron paramagnetic resonance (EPR) technique. As x increases, the dielectric behavior changed from a first-order phase transition to a diffuse phase transition to a Y7R dielectric-temperature stability. A strong EPR signal at g = 1.974, which is rare among rare-earth-doped BaTiO3 ceramics appeared unexpectedly in the single-phase (Ba1−xDyx)Ti1−x/4O3 ceramics with deliberately designed Ti vacancies. This signal was attributed to ionized Ba vacancy defects. A preference for the self-compensation mode of Dy3+ ions is responsible for the appearance of Ba vacancies. The real formula of the nominal (Ba1−xDyx)Ti1−x/4O3 is expressed as (Ba1−xDy3x/4)(Ti1−x/4Dyx/4)O3. In addition, the defect chemistry is discussed.  相似文献   

17.
《Ceramics International》2022,48(13):18730-18738
A series of new negative temperature coefficient (NTC) thermal materials based on (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 (0.00 ≤ x ≤ 0.20) ceramics were synthesized by a solid-state method. X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy were used to demonstrate the crystal structure, morphology, and composition of the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics, which were composed of solid solution based on the BaTiO3 phase. The average grain size of doped ceramic samples experienced the process of first decreasing and then increasing. The doping of Ce has reduced the sintering temperature. The temperature-dependent resistance analysis revealed that with the change of doping amount x, the thermal constant B300/1200 (1.21 × 104–1.13 × 104 K) and the activation energy Ea300/1200 (0.9777–1.0471eV) was initially increased to maximum values at x = 0.05, followed by the decreasing when x > 0.05. It has been established that the concentration of oxygen vacancies is affected by the transition between Ce4+ and Ce3+ provided by high levels of Ce doping. (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics exhibited excellent negative temperature characteristics in the range of 300–1200 °C. Moreover, the temperature resistance linearity was improved after samples were aged. Hence, the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics were regarded as a promising material for high-temperature NTC thermistors in a wide temperature range.  相似文献   

18.
(Nb+Al) co‐doped SrTiO3 ceramics with a nominal composition of Sr(Nb0.5Al0.5)xTi1‐xO3 (x = 0, 0.02, 0.04, and 0.06) were fabricated using the conventional solid‐state reaction method; giant permittivity (10500) and low dielectric loss (0.03) were obtained at x = 0.06. Dielectric and impedance spectroscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy, were employed to study why the dielectric property improved. The results indicate that the giant dielectric response occurs because of the combined effects of the off‐center Ti3+ reorientation and conduction of electrons with the polar ordering structure Ti3+/Ti4+. In contrast, the low dielectric loss can be attributed to electron localization that occurs because of the defect dipole . These fundamental understandings will benefit the design of doped SrTiO3 ceramics with desired performance.  相似文献   

19.
《Ceramics International》2020,46(1):715-721
The high recoverable energy density (Wrec) of 1.83 J/cm3 was achieved at 120 kV/cm by simply introducing 0.050 mol. % Li+ ions into the A-site of Bi0.5(Na0.4K0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free relaxor ceramics. Bi0.5(Na0.4-xLixK0.1)]0.96Sr0.04Ti0.975Ta0.025O3 (BNKSTT-100xLi) ceramic samples were prepared by solid-state reaction method. The influence of Li+ ions on structure and electrical properties was analyzed in detail. XRD patterns and Raman spectra of these samples were revealed a pure perovskite-type structure. BNKSTT-100xLi ceramics exhibited an obvious relaxor characteristic with the downshift of TF-R to ambient temperature. J - E loops confirmed the relaxor ferroelectric like nature. Leakage current density was proved to decrease with the increasing Li+ ions concentration. At the composition x = 0.050, remnant polarization (Pr) kept steady while maximum polarization (Pmax) and breakdown strength (DBS) increased obviously, which was beneficial to the enhancement of recoverable energy density.  相似文献   

20.
Ce‐doped BaTiO3‐based ceramics were prepared and studied to satisfy ultra‐broad temperature stability (from ?55°C to 300°C, capacitance variation rate based on C20°C is within ±15%). The sample with 0.6 mol% CeO2 succeeds to achieve this performance with a remarkably high ceiling temperature of 300°C. Meanwhile, the sample has good dielectric and electrical properties at room temperature (εr = 1667, tanδ = 1.478%, ρV = 5.9 × 1012 Ω·cm). Ce ion can substitute for Ti ion as Ce4+ or Ba ion as Ce3+. The substitution decreases the spontaneous polarization of BaTiO3, and then weakens the ferroelectricity of BaTiO3. As a result, the temperature stability of samples is improved obviously. Besides, CeO2 addition promotes the formation of exaggerated grains, which are consisting of Ba6Ti17O40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号