首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of ultra‐broadband near‐infrared (NIR) emission bismuth‐activated glasses and fibers offer a new promising platform for novel photonic devices such as new type of optical amplifiers and broadly tunable fiber lasers. Yet, challenge remains to manipulate the NIR emission behavior of bismuth (Bi) in photonic glasses for efficient Bismuth‐doped fiber and fiber lasers. Here, by engineering phosphorus and aluminum's topology, broadly tunable NIR emission has been realized in Bismuth‐doped phosphate laser glass. Structural and optical analyses on 27Al magic‐angle spinning nuclear magnetic resonance (MAS NMR), 31P MAS NMR, fourier transform infrared (FTIR) and static emission spectra suggest that polymerization of glass network can be improved by proper addition of aluminum into the system, which can be evidenced by partial conversion of Q2 to Q3 species of phosphorus and the shift of P–O–P asymmetric stretching vibration toward lower frequency, and this turns out beneficial to Bi NIR emission. Embedding aluminum tetrahedra into phosphorus glass network can reduce the local crystal field around bismuth and therefore lead to the blueshift of Bi emission. This work presents new insights into the luminescent behavior of Bi ions in phosphate glass and it helps the design and fabrication of Bismuth‐doped glasses and fibers in future.  相似文献   

2.
As one kind of novel and burgeoning laser materials, bismuth‐doped silicate glasses have aroused increasing attention for the super broadband near‐infrared (NIR) emission. However, the large optical scattering loss, resulting from optical heterogeneity in glass color and refractive index, limits their further applications in telecommunication system. Thus, it is urgent to uncover the essence of heterogeneity in Bi‐doped silicate glasses and subsequently improve glass optical performance. It will give us some hint to homogenize the glass component and Bi active centers so as to boost the development of Bi‐based glass materials. Here, taking 1 typical Bi‐doped calcium aluminosilicate glass as an example, we revealed the origin of the optical heterogeneities in glass color and refractive index through the NIR emission spectra, electron probe microanalyzer (EPMA) of elements and X‐ray photoelectron spectroscopy (XPS) of Bi 4f5/2, Bi 4f7/2, and Al 2p. The inhomogeneous distribution of Bi and aluminum components is responsible for the heterogeneity in this glass system. In addition, we found that tetrahedral coordinated aluminum favors the existence of Bi NIR centers, consequently resulting in enhanced Bi NIR emissions. Furthermore, based on our results and the role of Al3+ in glass network, we demonstrate the homogenizing of glass component by finely tuning glass composition. This work will enrich the understanding of Bi‐doped laser glass and provide a guideline for the design of component‐derived Bi‐doped silicate glasses and fibers with efficient NIR emission and high optical quality.  相似文献   

3.
Because of superbroad luminescence in the range of near infrared (NIR), Bi‐doped glasses and fibers have received more attentions recently for the applications in super broadband optical fiber amplifiers or new wavelength lasers. As the luminescence comes from the transitions between naked 6p orbitals of bismuth, it is very susceptible to slight changes of local field around Bi. Therefore, it is always very challenging to predict NIR emission of bismuth in advance. Here, we found bismuth NIR emission shows predictable tendency in ternary glass system of MgO–Al2O3–SiO2. The emission peak shifts red along the content of magnesium upon the excitation of 484 nm, which follows a single exponential growth equation. In the meantime, the full width at half maximum (FWHM) is broadened while the lifetime keeps decreasing. Glass structure analysis on basis of FTIR, 27Al NMR, 29Si NMR spectra reveals that these changes correlate to integrity of glass network, the increased disorder of local field around bismuth and the enhanced interaction between bismuth and host, which are perhaps due to the linear increase of nonbridging oxygen, and the enhanced Si–O asymmetric stretching vibrations along with magnesium, respectively. Electron probe microanalysis shows good homogeneity of Si, Al, Mg, Bi, and O distribution within the samples, and yoyo experiments of heating and cooling between 30°C and 300°C reveal the good resistance of such doped glasses to thermal degradation. This makes the glasses promising in applications of fiber devices even under extreme condition such as at higher temperature. The finding in this work should be helpful for the design of Bi‐doped laser glasses in future.  相似文献   

4.
Bismuth‐doped (Bi) glasses and fibers have raised considerable attention for broadband emission and tunable fiber lasers in the near infrared (NIR) region. However, they suffer from low efficiency and it remains challenging to enhance Bi NIR emission. Here, we propose a facile way to enhance and tune the Bi NIR emission by adjusting optical basicity and modulating the boron and aluminum coordination in borate glasses. We find that BO4 and AlO5 species favor Bi NIR emission, right followed by the analyses of static emission spectra, the Fourier transform infrared (FT‐IR), and nuclear magnetic resonance (NMR) spectroscopy. Furthermore, abnormal Bi NIR luminescence phenomenon and boron anomaly were observed, which are attributed to the synthetic effect of B and Al coordination transformation. Besides, we find that BO4 tetrahedron plays a major role in enhancing Bi NIR emission at low Al content, while AlO5 hexahedron group will dominate at high Al concentration. Our investigation may give an insight into the luminescent behaviors of Bi in borate glasses and contribute to improving the performance of Bi‐doped fiber and fiber lasers in future.  相似文献   

5.
Through the order–disorder transition process of zeolites, bismuth‐doped zeolite‐derived silica glasses with broadband near‐infrared (NIR) photoluminescence have been successfully prepared by spark plasma sintering (SPS). The samples were characterized by X‐ray diffraction, UV‐vis, photoluminescence, and fluorescence lifetime. The results showed that as‐prepared samples possessed favorable broadband NIR luminescence. The NIR emission (peaked at ~1140 nm) intensity decreased with increasing the bismuth doping concentration when excited by 500 and 700 nm. The tendency was different from the emissions (peaked at ~1240 nm) excited by 800 nm. In addition, the NIR fluorescence peaks of the fixed Bi concentration sample can be observed almost around 1140 or 1240 nm when excited by different wavelengths from 500 to 950 nm. These phenomena implied that the NIR emission peaked at different wavelengths may originate from different bismuth species. Three kinds of Bi active centers Bi+, Bi0, and (Bi2)2? were proposed to contribute to the NIR emission peaks at ~1140, 1240, and 1440 nm, respectively. Interestingly, a broadband NIR emission peaked at 1207 nm with a full‐width at half maximum of 273 nm was observed when excited by 600 nm, whose intensity was stronger than that excited by 800 nm. This property might be useful for broadband fiber amplifiers and tunable lasers.  相似文献   

6.
Bismuth (Bi)-doped laser glasses with broadband emission are of current interest in the fields of sensing, bio-imaging, and photonics. For practical applications, it must be considered how to improve the emission efficiency, in particular, for borate glasses with wide glass-forming range, low melting point, and excellent fiberizing ability. Herein, we experimentally demonstrate that addition of GeO2 to aluminoborate glasses can effectively enhance Bi NIR emission by more than 300 times with prolonged decay time (~500 μs) and good homogeneity, which is, to our best knowledge, seldom achieved in Bi-doped borate multi-component glasses. The addition of second glass-former GeO2, as revealed by detailed optical and structural analysis, leads to the facile regulation on local glass structure, forcing the conversion of aluminum species from AlO5 and AlO6 to AlO4 and consequently pushes the conversion of Bi3+ to Bi+ and Bi0 and stabilizes Bi NIR centers, which finally results in highly enhanced Bi NIR emission. We believe these results could contribute to designing Bi-activated multi-component laser glass and fibers with efficient NIR photoemission.  相似文献   

7.
Bismuth (Bi)-doped photonic glasses and fibers with broadband near-infrared (NIR) photoemission have potential applications in tunable lasers and broadband amplifiers. Yet, when it comes to all wavelength amplification of optical communication, it remains challenging to achieve efficient Bi NIR emission in the technically relevant C- and L- bands (1530-1625 nm). Here, we propose a scheme by fluorination triggered enhancement of ultra-broadband Bi NIR emission in nitrided germanate glasses. Besides, compared to previous research, a unique and efficient Bi-activated ultra-wideband NIR emission with new emission bands peaked at ~924 and ~1520 nm under excitation of 450 nm are obtained in nitrided germanate glasses after fluorination. Moreover, the fluorination can modulate the local chemical environment by forcing the conversion of aluminum species from AlO4 to AlO5 and AlO6 and consequently increase the flexibility of the glass network structure, which finally induces the conversion of Bi species and then manipulates the relative emission intensity of different Bi NIR centers. Thus, a flat and tunable emission spectrum covering the entire optical communication band is obtained by optimizing the fluoride amount. We believe this work is helpful to design the Bi-doped tunable fiber lasers and ultra-broadband amplifiers for all wavelength amplification of optical communication.  相似文献   

8.
Bismuth (Bi)-doped glasses and fibers are of current interest as promising active media for new fiber lasers and amplifiers due to their 800-1700 nm near-infrared (NIR) emission. However, the optically active Bi centers in silica are easily volatilized during high-temperature fiber drawing, which results in low Bi doping concentration and low gain NIR luminescence. Here, we explored the glass-forming region in a model glass system of sodium tantalum silicate (Na2O-Ta2O5-SiO2) glass and attained suitable glass host for enhancing Bi NIR emission, right followed by detailed analysis on optical and structural characterization. Glass-forming region roughly lies in where Ta2O5 ≤ 30 mol%, SiO2 ≥ 40 mol%, and Na2O ≤ 40 mol%. Not only is glass-forming ability improved but also Bi NIR emission is enhanced (~60 times) by the introduction of Ta into glass network. Dissociated Na cations are restricted beside Ta, the high-field-strength element, so that the negative impacts of Na cations on glass formation and Bi NIR emission are weakened, which is responsible for the highly enhanced Bi NIR emission. This work helps us understand the glass-forming of tantalum silicate glass systems and luminescent behaviors of Bi. Hopefully, it could contribute to designing the Bi-doped laser glasses and high gain fibers with stable luminescent properties in future.  相似文献   

9.
Bismuth‐doped glasses and crystals have been widely investigated due to their intriguing potential applications in superbroadband fiber amplifier and lasers in new NIR spectral range. However, few reports have been devoted so far to bismuth‐doped transparent glass‐ceramics. Here, this work reports on bismuth‐doped silicate glasses and glass‐ceramics, which were prepared by melt‐quenching and consequent annealing processes, respectively. On the basis of the analyses on crystallization kinetics, nucleation and growth rate of crystalline phase can be modulated and Sr2YbF7 nanophase can, therefore, be precipitated uniformly inside the glass matrix in a controlled way to maintain proper transparence especially in optical telecommunication windows. Once the nanophase comes into being, enhanced bismuth NIR luminescence can be observed by more than 40 times upon excitation of 470 nm. Similar enhancement can appear upon different excitation schemes and the mechanism is discussed accordingly. Such Bi doped transparent glass‐ceramics with improved luminescence efficiency might find application in fiber lasers for future optical fiber communication.  相似文献   

10.
Bi‐doped xTeO2–(60?x)GeO2–15B2O3–20MgO–5Al2O3 glasses were prepared by the conventional melt‐quenching method and their absorption and fluorescence spectra were characterized. Broadband near‐infrared (NIR) emission from Bi centers centered around 1240 nm with a full width at half maximum (FWHM) of 250 nm was observed, and the position of the emission peak strongly depends on the excitation wavelength. Increasing TeO2 concentration results in the strong coloration of the glass, leading to the reduction and finally, complete quenching of the NIR emission. Based on Raman, X‐ray photoelectron spectroscopy and transmission microscopy observation, the coloration of the glass at high TeO2 concentration can be ascribed to the precipitation of elemental Te nanoparticles of around 3–8 nm, which effectively suppresses the NIR emission by reabsorption. The precipitation of Te nanoparticles in an oxide glass may find novel applications in photonics and relevant fields.  相似文献   

11.
Borosilicate glasses doped with PbSe quantum dots (QDs) were prepared by a conventional melt‐quenching process followed by heat treatment, which exhibit good thermal, chemical, and mechanical stabilities, and are amenable to fiber‐drawing. A broad near infrared (NIR) photoluminescence (PL) emission (1070‐1330 nm) band with large full‐width at half‐maximum (FWHM) values (189‐266 nm) and notable Stokes shift (100‐210 nm) was observed, which depended on the B2O3 concentration. The PL lifetime was about 1.42‐2.44 μs, and it showed a clear decrease with increasing the QDs size. The planar [BO3] triangle units forming the two‐dimensional (2D) glass network structure clearly increased with increasing B2O3 concentration, which could accelerate the movement of Pb2+ and Se2? ions and facilitate the growth of PbSe QDs. The tunable broadband NIR PL emission of the PbSe QD‐doped borosilicate glass may find potential application in ultra‐wideband fiber amplifiers.  相似文献   

12.
Glass‐ceramic fibers containing Cr3+‐doped ZnAl2O4 nanocrystals were fabricated by the melt‐in‐tube method and successive heat treatment. The obtained fibers were characterized by electro‐probe micro‐analyzer, X‐ray diffraction, Raman spectrum and high‐resolution transmission electron microscopy. In our process, fibers were precursor at the drawing temperature where the fiber core glass was melted while the clad was softened. No obvious element interdiffusion between the core and the clad section or crystallization was observed in precursor fiber. After heat treatment, ZnAl2O4 nanocrystals with diameters ranging from 1.0 to 6.3 nm were precipitated in the fiber core. In comparison to precursor fiber, the glass‐ceramic fiber exhibits broadband emission from Cr3+ when excited at 532 nm, making Cr3+‐doped glass‐ceramic fiber a promising material for broadband tunable fiber laser. Furthermore, the melt‐in‐tube method demonstrated here may open a new gate toward the fabrication of novel glass‐ceramic fibers.  相似文献   

13.
Yb3+ singly doped tellurite as‐prepared glasses and glass ceramics were synthesized by high‐temperature melt‐quenching method. The excitation and emission spectra have shown that there is an efficient near‐infrared (NIR) down‐shifting due to the sensitization of a novel Yb3+–O2? charge‐transfer (CT) band. The CT band in the present host is located at around 320 nm at room temperature, which is much lower than that in other oxide hosts reported before. The possible energy‐transfer mechanism from the Yb3+–O2? CT band to the 2F5/2 multiplet of Yb3+ ions is discussed in detail. The concentration quenching is not observed even when the Yb3+‐doped concentration is increased up to 40 mol%. The excitation of this strong broad CT band causes intense NIR emission of Yb3+:2F5/22F7/2 from 920 to 1120 nm, making the tellurite glasses suitable for efficient photovoltaic (PV) application as a spectral conversion material for the crystalline Si (c‐Si) solar cells.  相似文献   

14.
Luminescence glass is a potential candidate for the light‐emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu‐, Tb‐, and Dy‐doped oxyfluoride silicate glasses for LEDs by means of X‐ray diffraction, photoluminescence spectra, Commission Internationale de L'Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near‐ultraviolet light due to the simultaneous generation of blue, green, yellow, and red‐light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single‐doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can be suppressed by introducing B2O3 into the glass. The conversion of Eu3+ to Eu2+ takes place in Eu single‐doped oxyfluoride aluminosilicate glasses. The creation of CaF2 crystals enhances the conversion efficiency. In addition, energy transfers from Dy3+ to Tb3+ and Tb3+ to Eu3+ ions occurred in Eu/Tb/Dy codoped glasses, which can be confirmed by analyzing fluorescence spectra and energy level diagrams.  相似文献   

15.
Rare‐earth‐doped oxyfluoride germanate and borate glasses were synthesized and next studied using spectroscopic methods. Influence of fluoride modifier on luminescence properties of rare earths in different glass hosts was examined. The excitation and emission spectra of Pr3+ and Er3+ ions in the studied glasses were registered. The emission spectra of Pr3+ ions in germanate and borate glasses are quite different and depend strongly on the glass host. In samples doped with Er3+ ions emission bands located around 1530 nm corresponding to the main 4I13/24I15/2 laser transition were registered, independently of the glass host. Quite long‐lived near‐infrared luminescence of Er3+ ions was observed for germanate glasses with low BaF2 content, while in borate glass systems influence of barium fluoride on luminescence lifetimes is not so evident. The Judd–Ofelt calculations were used in order to determine quantum efficiencies of excited states of rare‐earth ions in germanate and borate glasses.  相似文献   

16.
Tin fluorophosphate (TFP) glass, which can be used to manufacture a phosphor‐in‐glass (PiG) for achieving high‐power white light‐emitting diodes (w‐LEDs), has attracted a great deal of attention because of its low‐melting point. Mn2+‐doped ultralow glass transition temperature (~122°C) Sn–F–P–O glasses were prepared to achieve broadband visible light emission from 390 to 720 nm. By controlling the concentration of MnO, the emission color of the TFP glass can be adjusted from blue/cool white to warm white/red. In particular, 0.2 mol% MnO‐doped TFP glass, which yields bright and warm white light and has ultralow glass transition temperature and thermal stability, has a promising application prospect in the field of high‐power w‐LEDs.  相似文献   

17.
Bismuth (Bi)-doped glasses with broadband near-infrared (NIR) emission have been drawing increasing interest due to their potential applications in tunable fiber lasers and broadband optical amplifiers. Yet, the implementation of highly efficient and ultra-broadband Bi NIR emission covering the whole telecommunication window remains a daunting challenge. Here, via a metal reduction strategy to simultaneously create a chemically reductive environment during glass melting and enhance the local network rigidity, a super broadband (FWHM ≈ 600 nm) NIR emission covering the entire telecommunications window with greatly enhanced intensity was achieved in Bi-doped germanate glasses. More importantly, due to the excellent thermal stability, the super broadband Bi NIR emission can be well retained after the glass was drawn into an optical fiber. Furthermore, the transmission loss of 0.066 dB/cm at 1310 nm and an obvious broadband amplified spontaneous emission spectrum spanning a range of 1000–1600 nm were observed in this fiber. This work can strengthen our comprehension of the complicated Bi NIR luminescence behaviors and offer a feasible and universal way to fabricate tunable fiber lasers and broadband optical amplifiers based on Bi-doped multicomponent glasses.  相似文献   

18.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

19.
This work reports on process‐induced impurities in rare‐earth ion: Dy3+‐doped selenide chalcogenide glasses, which are significant materials for active photonic devices in the mid‐infrared region. In particular, the effect of contamination from the silica glass ampoule containment used in chalcogenide glass synthesis is studied. Heat‐treating Dy‐foil‐only, and DyCl3‐only, separately, within evacuated silica glass ampoules gives direct evidence of silica ampoule corrosion by the rare‐earth additives. The presence of [Ga2Se3] associated with [Dy] on the silica glass ampoule that has been contact with the chalcogenide glass during glass melting, is reported for the first time. Studies of 0–3000 ppmw Dy3+‐doped Ge16.5As9Ga10Se64.5 glasses show that Dy‐foil is better than DyCl3 as the Dy3+ additive in Ge‐As‐Ga‐Se glass in aspects of avoiding bulk crystallization, improving glass surface quality and lowering optical loss. However, some limited Dy/Si/O related contamination is observed on the surfaces of Dy‐foil‐doped chalcogenide glasses, as found for DyCl3‐doped chalcogenide glasses, reported in our previous work. The surface contamination indicates the production of Dy2O3 and/or [≡Si‐O‐Dy=]‐containing particles during chalcogenide glass melting, which are potential light‐scattering centers in chalcogenide bulk glass and heterogeneous nucleation agents for α‐Ga2Se3 crystals.  相似文献   

20.
The design of functional materials with tunable broadband luminescence performance is still of great interest in the fields of lighting, solar cells, tunable lasers, and optical amplifiers. Here, via a melt-quenching method, a series of bismuth (Bi)-doped germanium-borate glasses with composition of 40GeO2–25B2O3–25Gd2O3–10La2O3xBi2O3 have been prepared, in which multiple Bi active centers can be stabilized simultaneously. Dual-modulating modes of visible (380-750 nm) and near-infrared (NIR) (1000-1600 nm) broadband photoemissions were effectively controlled under flexible excitation scheme. Photoluminescence (PL) spectra at low temperature 10-298 K were appropriately employed to interpret such an unusual wide visible emission band. To further illustrate the origin of NIR component, transmission electron microscopy (TEM) measurement was carried out. It is demonstrated experimentally that the visible emission mainly originates from the collective contribution of the 3P1/3P01S0 transitions of Bi3+, while the broadband NIR luminescence should be related to the formation of low valent Bi+ and (or) Bi0 centers. This work may help to enhance the knowledge of the complex luminescence mechanism for the Bi species and it also enables such transparent glass materials to be a promising candidate for the multifunctional tunable light source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号