共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
分析了金属零件表面缺陷的基本特征、金属零件表面缺陷的种类及表面缺陷检测方法,提出了利用机器视觉技术来检测金属零件表面缺陷,并对视觉技术发展趋势进行了探析,对开展机器视觉的研究具有一定的参考意义。 相似文献
3.
4.
《机械工程与自动化》2017,(5)
为实现对墙地砖表面缺陷快速精确的自动检测,对基于机器视觉的自动检测技术进行了研究,介绍并开发了一种基于机器视觉的墙地砖表面缺陷自动检测系统。在分析了墙地砖的表面特征、缺陷类型和现有检测算法的基础上,提出了一种基于图像梯度方差和加权信息熵相结合的自适应BHPF滤波检测算法。实验结果表明:该检测算法可快速有效地完成墙地砖表面缺陷的检测,缺陷识别正确率达97.3%。实验验证了理论分析和检测算法的正确性,可用于墙地砖表面缺陷的识别检测。 相似文献
5.
6.
机器视觉检测滚子表面缺陷 总被引:1,自引:0,他引:1
介绍利用机器视觉检测滚子表面缺陷的实验装置。该装置采用512位SSPD列阵作为摄景器件。藉助专门机械装置实现滚子表面全扫描展开,把获得的二维图象信息送PC/AT微机进行图象处理。文中提出了三种图象处理算法:多段平均法、二次背景处理法和局部算子处理法。用上述算法较好地解决了不同精度滚子的表面缺陷检测。附图16幅,参考文献5篇。 相似文献
7.
8.
《仪表技术与传感器》2016,(7)
针对人工目视检查铜条表面缺陷效率低的问题,提出基于机器视觉检测铜条表面缺陷的方法。针对铜条表面不同的缺陷类型采用不同的检测方法,对常见的缺陷通过提取感兴趣区域,采用Otsu最佳阈值分割方法,再经过Blob分析直接检测出缺陷。对在铜条表面交接的边缘处的分层缺陷难以检测出的问题,采用基于Gabor滤波器的方法来检测。实验结果表明,能准确检测出上述类型的铜条表面缺陷。 相似文献
9.
在半导体、PCB、汽车装配、液晶屏、3C、光伏电池、纺织等行业中,产品外观与产品性能有着千丝万缕的联系。表面缺陷检测是阻止残次品流入市场的重要手段。利用机器视觉的技术进行检测效率高、成本低,是未来发展的主要方向。本文综述了近十年来基于机器视觉的表面缺陷检测方法的研究进展。首先给出了缺陷的定义、分类以及缺陷检测的一般步骤;然后重点阐述了使用传统图像处理方式、机器学习、深度学习进行缺陷检测的原理,并比较和分析了优缺点,其中传统图像处理方式分为分割与特征提取两个部分,机器学习包含无监督学习和有监督学习两大类,深度学习主要囊括了检测、分割及分类的大部分主流网络;随后介绍了30种工业缺陷数据集以及性能评价指标;最后指出缺陷检测方法目前存在的问题,对进一步的工作进行了展望。 相似文献
10.
基于机器视觉的表面缺陷检测以无接触、无损伤、自动化程度高及安全可靠等突出优点被广泛应用于各种工业场景中,尤其随着深度学习技术的快速发展,视觉缺陷检测有助于提高产品及装备的智能化水平。综述分析了表面缺陷检测的常用方法、通用数据集、检测结果评价指标和现阶段面临的关键问题。首先,将缺陷检测方法分为传统基于图像处理的缺陷检测、基于传统机器学习模型的缺陷检测及基于深度学习的缺陷检测,并对各种方法进一步细分归类和对比分析,总结了每种方法的优缺点和适用场景;然后,对目前常用的缺陷检测结果评价方法做出了描述,进一步探讨了表面缺陷检测应用在实际工业产品检测过程中关键问题——小样本问题,重点剖析了小样本问题的解决方法和无监督学习在解决这类问题上的优势;最后,从提高缺陷检测方法的工业适用性角度展望了下一步研究方向。 相似文献
11.
《现代制造技术与装备》2020,(6)
目前,炮泥表面缺陷检测是人工来完成。基于自动化生产的需求,设计炮泥缺陷自动化检测系统。利用机器视觉检测技术进行图片采集与处理,实现缺陷检测与自动分拣。实验结果表明,缺陷自动化检测系统可以客观检测缺陷,提高炮泥生产的效率,降低生产成本,具有较高的工程应用价值。 相似文献
12.
为解决手机壳表面缺陷检测采用人工目测法,检测效率低且漏检率高的问题,采用基于机器视觉的手机壳表面缺陷检测方法,实现产品缺陷的自动化检测。该检测算法采用八方向的各向异性高斯方向导数滤波器对图像进行卷积滤波,并做归一化处理;利用滤波结果图的直方图确定自适应阈值,并进行阈值分割;对图像进行细化后通过划痕缺陷长度特征进行缺陷的提取。实验结果表明,该划痕缺陷检测算法能够实现长度0.5 mm以上的划痕缺陷的准确检测,检测效率高,满足企业的实际需求。 相似文献
13.
《仪表技术与传感器》2020,(9)
针对当前FPC(柔性电路板)缺陷检测中人工目检效率低的问题,基于机器视觉技术设计了一套实时检测系统。首先搭建了硬件系统,然后对FPC的4种表面缺陷特征进行了研究,基于Halcon设计了相应的缺陷检测算法,提出了通过模板匹配提取ROI的方法,以及运用图像自乘与高斯线检测来提取折痕,最后基于MFC开发了缺陷实时检测系统。实验结果显示,设计的系统检测准确率可达90%以上,且每片FPC检测时间只需0.2 s。 相似文献
14.
基于谱残差视觉显著性的带钢表面缺陷检测 总被引:2,自引:0,他引:2
针对带钢表面缺陷检测实时性要求高,采集的图像易受光照环境影响且缺陷特征弱等因素影响,提出一种基于谱残差视觉注意模型的带钢表面缺陷在线检测算法。首先,提出改进同态滤波方法对图像预处理,去除光照不均匀的影响,改善后续的分割结果。然后,构建谱残差视觉注意模型,通过对数频谱曲线差分得到缺陷显著图像。最后,提出加权马氏距离方法对显著图像阈值化增强,并利用连通区域标记法,标记出原带钢图像的缺陷位置。对提出的算法进行了实验验证,结果显示:该算法检测速度快,单幅图像平均检测耗时仅37.6ms,满足带钢在线实时检测要求。在同一缺陷数据库与灰度投影法,多尺度Gabor边缘检测法和隐马尔可夫树模型法进行了性能对比,结果表明:本文算法对带钢常见8类缺陷类型,平均检测率达到了95.3%,且漏检率和误检率较低,有效性高于对比算法。 相似文献
15.
在复杂气象环境下,浮空器囊体作为整机系统的直接受压面,其表面必须平整光滑,无褶皱损伤,以将其与空气的摩擦力降至最小。文中基于机器视觉对浮空器囊体材料表面缺陷检测进行系统设计。首先为了降低背景灰度变化对缺陷检测的影响,研究了一种同时具有噪声滤除与图像增强功能的预处理算法;其次利用图像二值化和中值滤波技术实现特征图像的预处理,并结合纹理特征提取技术(基于灰度共生矩阵)对囊体材料表面不同缺陷图像的特征参数进行仿真提取,通过分析不同特征参数,判断囊体材料的表面缺陷类型。该系统对采集到的200个囊体材料表面缺陷样本的分析表明,所用方法能识别浮空器囊体材料93.6%的表面缺陷,识别内容包括缺陷的类型、位置、大小等,并根据缺陷的类型加盖不同的标记。该系统具有较高的识别率和准确率,可对浮空器囊体材料表面缺陷进行快速检测。 相似文献
16.
针对笔芯球珠表面缺陷检测识别问题,设计并实现了基于机器视觉的笔芯球珠表面缺陷检测系统。笔芯球珠在球面展开机构作用下,通过图像采集模块获取5张可以完全覆盖整个球面的图像。通过对每幅图像进行缺陷图像提取后,采用基于轮廓角点匹配的方法实现对每幅图像中缺陷图像的拼接;基于提取的有效特征组合通过KNN分类算法对完整的缺陷图像进行缺陷识别。试验结果表明,该方法能够对笔芯球珠表面缺陷进行精确有效的检测与识别。 相似文献
17.
在分析钢球表面光学反射特性的基础上,构建了采用球积分光源与0.5×远心镜头组成的钢球表面缺陷图像检测平台,解决了钢球表面成像难度较高的问题.根据钢球表面图像的特征,利用分段线性灰度增强算法和边界跟踪实现了对钢球表面微小缺陷的分割和区域分类,并结合基于灰度共生矩阵的综合熵作为判定钢球表面是否存在缺陷的依据.最后利用矩形相似度与圆形相似度之比、角度等特征实现了缺陷分类器模型的建立,很好地解决了钢球表面缺陷的分类与识别.试验结果表明,该模型对钢球表面5类缺陷的识别率均可达到90%以上,并能很好进行分类,模型在1 600×1 200图像分辨率下,算法耗时小于80 ms,可以满足工业检测对算法实时性的要求. 相似文献
18.
19.
在以批量生产方式为特征的汽车、摩托车、内燃机等行业,准确、快速地识别和检测重要零部件关键部位的表面缺陷,直接关系到产品质量,若不及时剔除不合格品,将会带来严重的质量隐患。以汽车发动机连杆为例,在采用了先进的分离大小头的胀断工艺后,其结合面有可能会产生破口,因此,必须进行100%的探测,具体的质量评定标准为: 相似文献