首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对传统液压足式机器人足式步态行走过程中,足端会受到地面较大冲击力,容易对机身产生冲击,造成机身不平稳等问题,提出了一种基于位置内环阻抗外环的柔顺控制算法,有效地降低了足端冲击力,使得足端与地面友好接触。首先,以液压足式机器人单腿为对象,对机器人单腿结构和工作原理进行介绍;其次,设计了单腿液压伺服控制回路系统,并对液压足式机器人元器件进行选型;最后,针对足式行走足端柔顺性触地问题设计了位置内环阻抗外环的柔顺控制算法,利用单腿实验平台进行柔顺性触地实验。实验结果表明基于位置内环阻抗外环的柔顺控制算法,有效地降低了足端冲击力,验证了该文设计思路及算法应用的可行性。  相似文献   

2.
针对传统液压四足机器人电液伺服阀控缸系统的非线性、参数时变性、控制误差大等问题,提出了一种基于位置闭环控制的模型参考自适应控制算法。以液压四足机器人为研究背景,介绍了单腿整体结构及组成;然后,建立液压四足机器人电液伺服阀控缸控制系统模型、传递函数,并设计模型参考自适应控制器;最后,结合AMESim-MATLAB软件搭建四足机器人电液伺服阀控缸系统的控制模型,并对搭建好的测试平台进行实验。实验表明基于电液位置伺服系统的液压四足机器人阀控缸位置控制系统模型的合理性,阀控缸位置跟踪效果好、响应速度快、误差小、鲁棒性强,验证了所设计的位置闭环控制的模型参考自适应控制算法的可行性。  相似文献   

3.
马明  王建中  盛沙 《机械设计》2012,29(3):25-28
为了研制适应各种路况、并能负荷更大负重的足式机器人,设计了一种以液压驱动的四足机器人机构,确定了机构设计和液压系统的关键参数,其中腿机构设计是关键部分。通过建立数学公式分析了机器人各关节运动所输出的力及力矩,并采用虚拟样机技术对液压驱动4足机器人进行建模和行走仿真,通过测量仿真机器人各关节力及力矩等数据,验证了机构设计参数选取的合理性及所选择的液压系统满足设计要求。  相似文献   

4.
提出了一种新型弹性足式机器人腿部结构设计方法。设计了一种结构简单、响应速度快、抗冲击性强的新型足式机器人腿LCS-Leg(Linkage cable-drive spring leg)。该机器人腿采用弹性连杆机构和线驱动系统,有效降低了腿部惯量和着地冲击力,提高了机器腿的响应速度和减振抗冲能力。使用复数矢量法和D-H方法建立该机器腿运动学模型,基于此模型求解足端运动工作空间,分析了LCS-Leg的越障能力。设计单腿仿真试验平台,对两种不同结构的机器腿进行仿真,对比两者的质心高度、前进速度和足端接触力,验证了所设计机器腿的运动性能。试制弹性足式机器人腿及其试验平台,通过实物样机单腿行走试验,验证了设计方法的有效性,并完成了四足机器人整体结构设计。  相似文献   

5.
足式机器人以其良好的地面适应能力吸引了众多学者研究。然而足式机器人的驱动方式不尽相同,液压驱动因其输出力大响应速度快逐渐成为足式机器人主要采用的驱动方式,因此液压系统驱动器的设计就显得十分关键。介绍了足式机器人液压缸驱动器设计方法。首先通过Adams建立机器人虚拟样机平台,并通过MATLAB搭建机器人控制系统,然后进行联合仿真实验,通过仿真实验得到液压缸设计参数。根据所得到的液压缸设计参数,经过公式计算得到液压缸结构设计参数,进而进行液压缸结构设计和伺服阀选型。最后对所设计的液压缸进行有限元分析,使其满足机器人工作要求。  相似文献   

6.
机电液一体化系统是不同领域子系统的综合体,为分析液压四足机器人单腿机电液系统的整体特性,运用软件接口的联合仿真方法对液压四足机器人单腿系统进行机电液一体化建模。在联合仿真平台上,对有无蓄能器两种情况进行仿真比较,显示了蓄能器减小系统压力脉动和稳定系统压力的作用。设计了一种仿生足端轨迹,与现有的基于椭圆的足端轨迹比较,发现在同样的条件下,仿生足端轨迹所需的流量更小。仿真结果对液压四足机器人物理样机设计具有一定指导意义。  相似文献   

7.
为缓解液压驱动足式机器人动态步态行走时着地瞬间足端冲击对机器人系统及其运动控制的影响,提出了一种基于关节运动规划的机器人柔顺着地控制方法。以液压驱动单腿跳跃机器人为研究对象,分析机器人足端着地冲量,通过选择合适的机器人着地姿态和减小机器人着地前足端速度实现机器人柔顺着地,为此在空中相进行余弦速度曲线关节运动轨迹规划,以及着地相进行余弦函数关节运动轨迹规划。将该方法分别应用于基于MATLAB/Simulink软件建立的仿真模型和试验样机进行单腿竖直跳跃控制实验,仿真和试验结果显示采用该方法的机器人跳跃控制消除了足端着地瞬间地面作用力在膝关节液压缸无杆腔形成的液压冲击,实验结果表明提出的基于关节运动规划的机器人柔顺着地控制方法合理可行。  相似文献   

8.
仿生足式机器人关节普遍采用传统液压驱动方式,由于其能量效率不高,无法满足机器人高负载能力和自主连续工作时间的应用要求。在对机器人关节运动进行分析的基础上,提出了一种基于数字液压的关节驱动系统的实现方法,并对其所需流量和能量效率进行分析和仿真。结果表明:与传统液压相比,数字液压能减少关节驱动系统所需流量,从而提高能量效率。  相似文献   

9.
正液压驱动型足式机器人各关节主动自由度一般均安装一个高集成性的液压驱动单元,液压驱动单元可大幅提升机器人各关节的功重比,有助于提升机器人整机的运动性能和负重能力。特别是其与柔顺控制相结合,可有效缓解外界刚性冲击,又有助于保证机器人机身结构和附带的电气设备不受破坏。但液压驱动单元引入的同时,带来了强非线性、参数时变性和负载复杂多变性等一系列液压系统的共性问题,这些问题使各关节的高精度高响应和机器人柔顺控制难度加大。若能从根本上解决机器人腿部液压驱动系统的柔顺控制问题,将有助于促进液压驱动型足式机器人加快走出实验室,加速其产业化发展进程。  相似文献   

10.
液压油源是足式机器人液压驱动系统的核心供能元件,将电能产生的机械能转化为油液的压力能,为驱动机器人各关节运动提供动力源。液压油源质量一般占据足式机器人整机质量超过20%,实现油源的轻量化,将有助于提升足式机器人的续航能力、机动性和承载能力。传统液压油源设计过程中更关注性能,在轻量化匹配设计方面还有待进一步完善。首先进行足式机器人轻量化液压油源的原理设计;其次将液压油源以功能为依据进行模块划分,分析液压油源各模块质量影响参数;针对质量与体积占比较大的电机泵进行匹配研究,针对蓄能器模块进行参数轻量化分析;针对集成阀块的轻量化设计,研究流道构建与元件排布原则;成功研发一种轻量化液压油源样机;最终形成了一种足式机器人轻量化液压油源匹配设计方法,有助于实现足式机器人液压驱动系统的轻量化。  相似文献   

11.
在足式机器人运动过程中,柔顺性控制能有效减少足端触地冲击力,提高环境适应能力。被动弹簧常被用来实现机器人与环境柔性接触,但不能有效吸收剩余冲击能量。主动柔顺能够根据环境不同而调整末端刚度与阻尼,却由于冲击力作用时间很短,对执行器的响应速度有较高的要求。试验发现将主动柔顺控制与被动柔顺相结合,可弥补上述不足,并实现机器人柔顺性触地。在单液压执行器系统中验证了这种方法的有效性,将此控制策略应用在四足机器人单腿系统,得到了同样的效果。通过分析单自由度执行器系统,总结所提柔顺性控制器参数设计原则,进而为四足机器人整体柔顺性设计提供依据。  相似文献   

12.
针对液压四足机器人在坚硬路面行走时,足端位置易受刚性冲击,导致运动姿态平稳性差的问题,提出一种液压四足机器人足端力预测控制方法.在分析液压四足机器人结构的基础上,根据运动学与力学模型构建了液压伺服系统的力控制模型;采用改进自适应布谷鸟优化BP神经网络算法建立足端力预测控制模型,通过仿真对比分析验证了该算法的可行性.最后...  相似文献   

13.
针对山地果园单个移动机器人爬坡能力不足及稳定性差等问题,提出了一种多移动机器人协同操作的方法。在原有六足机器人结构的基础上增加了用于多机协同操作的连接件,得到了用于多机协同操作的机器人单体。将3个六足机器人单体通过协同操作得到了3种典型协同模式:串行模式、并行模式、三角模式。最后采用稳定锥法对足式移动机器人系统的单体模式及3种典型协同模式在6种典型地形情况下的静态、动态稳定性分别进行了分析。理论分析及仿真实验结果表明:3种典型协同模式间可进行两两切换;在6种典型地形情况下,通过多机协同操作及协同模式切换的方式可提高足式机器人系统的稳定性。  相似文献   

14.
在许多场合中,机器人需要大负载和高功率密度驱动能力,液压驱动无疑是较好的驱动方式,然而传统液压系统复杂,限制了其在机器人驱动上的应用。提出了一种基于低油污染敏感度的新型机器人液压驱动技术,通过大幅度提升液压伺服元件的抗污染能力简化液压系统,介绍了应用液压元件浮动结构设计方法研制的一体化结构伺服油缸和三级双叶片伺服摆动缸在"高性能四足仿生机器人"和"新型液压驱动机械臂"项目中的应用,给出了一体化结构伺服油缸的性能测试结果。  相似文献   

15.
针对液压四足机器人在关节位置控制模式下引起的机器人内力问题,建立液压四足机器人单腿运动学方程和单腿动力学方程,分析机器人内力产生的机理及其对机器人性能的影响,提出基于动力学模型的机器人内力自适应抑制策略。自适应控制器利用关节理论力与实际力间的差值对位置指令进行补偿,以实现消除内力的目的。通过液压四足机器人HD平台进行控制策略验证,实验结果表明,机器人在位置控制模式下,机器人内力抑制策略可有效降低系统内力,使得机器人实际驱动力与理论驱动力接近,验证了控制策略的有效性。  相似文献   

16.
液压驱动单元(Hydraulic drive unit,HDU)是液压驱动型足式机器人常用的关节驱动器,具有集成度高、功率密度大等特性。机器人顶层规划后,需依靠其完成具体动作,实现机器人的行走、对角小跑、奔跑等步态。HDU所受外负载会随机器人腾空相和着地相频繁大幅变化,严重影响系统性能。若HDU具备高性能基于力的阻抗控制,则可有效减小机器人在运动过程中足地接触时的碰撞力,保证机器人运动的平稳性。为提高基于力的阻抗控制系统的抗外扰动能力,研究一种前馈抗扰控制(Feedforward disturbance rejection control,FDRC)。介绍HDU基于力的阻抗控制系统及其数学模型,推导其非线性状态空间表达式。针对系统的外扰动推导等价输入矩阵,设计前馈抗扰控制器,并估算伺服阀流量系数。利用HDU性能测试试验台,针对不同工况和典型信号进行试验。试验结果表明,FDRC可大幅提高HDU基于力的阻抗控制系统的抗外扰动能力,且工况适应性良好。该控制方法可降低外扰动对液压驱动型机器人的影响,提高机器人的适应性。  相似文献   

17.
针对液压四足机器人结构布局混乱、能量损失大及控制策略复杂等问题,从机器人整机、液压系统和控制策略3个角度分析了液压四足机器人的研究现状。首先,对各团队的机器人进行介绍,指出国内外的技术差距;然后,从动力来源、系统类型、液压回路和伺服执行元件4个方面对液压系统的主要2大构成分别阐述,着重介绍了以节能为目的的阀控系统和集成化、一体化的伺服执行器;接着概述了主流的几种控制策略,并分析各自的优缺点;最后,指出液压四足机器人的发展方向将集中在高速高压化、轻量化、节能降噪以及先进的控制算法,以实现液压四足机器人的高动态性能和行业应用。  相似文献   

18.
提出了基于计算机辅助几何法的多足步行机器人运动学分析方法。基于多足步行机器人内部的结构约束关系,建立了典型结构机器人的SolidWorks模型,利用VB驱动对SolidWorks进行二次开发,建立了一个能够自动求解多足步行机器人爬行步态的正运动学求解系统。该系统操作简单,适用于所有爬行类多足步行机器人。  相似文献   

19.
足式机器人的稳定行走*   总被引:3,自引:0,他引:3  
足式机器人在行走过程中,足端与地面之间的法向冲击力将影响机器人的在垂直方向上的稳定性。被动柔顺可以减小垂直冲击力但同时可引发平台持续震荡。针对该问题,设计基于足端力反馈的主动柔顺控制器,分析其对机器人垂直稳定性的影响。机器人由于机械间隙、步态、路面等因素将出现足端打滑现象,导致机器人水平方向失稳。引入摆腿回缩技术,分析摆腿回缩对机器人水平稳定性能的影响。仿真和液压足式机器人行走试验验证提出方法的有效性,提高了机器人行走过程中的垂直和水平方向稳定性。  相似文献   

20.
面向农情信息采集的小型四足柔性机器人设计   总被引:1,自引:0,他引:1  
与大型农业设备相比,采用足式机器人进行农情信息采集可以缓解土壤机械压实问题。为了提高足式机器人运动速度,降低运动能耗,提出一种新型的小型柔性四足机器人结构,在机构设计时采用三段式两自由度腿部结构、远程绳索驱动式膝关节并增加弹簧蓄能装置,推导机器人支撑相的足端轨迹曲线斜率与机器人推进力的关系,提出一种斜线式足端轨迹曲线,仿真及样机试验结果验证了所提轨迹曲线的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号