共查询到20条相似文献,搜索用时 10 毫秒
1.
基于Gabor-2DLDA方法的人脸识别研究 总被引:2,自引:2,他引:2
结合Gabor小波、二维线性鉴别分析(2DLDA)的特点,提出一种人脸识别方法。算法首先对人脸图像进行Gabor小波变换,然后进行2DLDA处理,最后使用最近邻法则进行分类。使用这种方法在ORL、Yale人脸库上进行测试,结果表明,Gabor-2DLDA方法比其它传统方法具有更优的性能,而且在提高识别率的同时算法的复杂程度并没有明显增加。 相似文献
2.
基于Gabor小波和二维主元分析的人脸识别 总被引:3,自引:1,他引:3
论文提出了一种基于Gabor小波和二维主元分析(2DPCA)的人脸识别方法。该方法首先对人脸图像进行Gabor小波变换,将小波变换的系数作为人脸图像的特征向量;然后,用2DPCA对所得的人脸图像特征进行降维,并采用最近邻法进行分类;最后,利用AT&T人脸库,对基于Gabor小波和二维主元分析(2DPCA)的人脸识别方法和基于Gabor小波和PCA的人脸识别方法进行了仿真比较实验。仿真实验表明,基于Gabor小波和2DPCA的人脸识别方法具有较好的识别性能。 相似文献
3.
4.
本文研究基于Gabor小波变换和流形学习的人脸识别方法,首先引入Gabor小波对人脸图像提取不同方向、不同尺度的多个Gabor幅值特征(Gabor magnitude feature),然后使用能够提取子流形的NPE算法对GMF特征进行维数约简,最后使用线性判别分析进一步提取鉴别性特征。此算法利用了Gabor特征对人脸图像的优异表征能力、流形方法和传统的判别方法。在标准人脸库上的实验结果表明,与其他降维方法相比,新算法能够获得较好的识别效果。 相似文献
5.
本文首先通过直方图均衡化等预处理方法增强图像的整体对比度,使图像的细节更加清晰.然后利用Gabor小波变换,选取不同的尺度和方向对人脸表情特征进行提取.最后通过实验结果对比证明预处理后的图片在进行小波变换时能节省大量的运算时间,并提高识别率. 相似文献
6.
提出了一种新的人脸识别算法。该算法采用Gabor小波和一种新颖的方式来提取人脸特征,利用局部线性嵌入(Locally Linear Embedding,LLE)算法来实现数据的非线性降维处理,最后训练基于欧式距离的最近邻分类器进行分类判决。在ORL人脸库中与PCA方法、Gabor小波+PCA方法和直接的LLE算法进行了实验比较,实验结果表明,提出的Gabor小波+LLE的方法具有更优的性能。 相似文献
7.
提出了一种基于Gabor小波变换和监督等距映射(supervised isometric feature mapping,S-ISOMAP)的人脸识别方法.针对流形学习算法不能消除图像特征向量中高阶相关信息的缺点,引入Gabor对归一化的人脸图像进行多方向、多分辨率滤波,并提取其对应不同方向、不同尺度的多个Gabor幅值特征(Gabor magnitude feature,GMF),然后使用具有提取鉴别子流形的S-ISOMAP算法对GMF特征进行维数约简,最后使用最近邻分类器进行分类.该方法综合运用了Gabor特征对人脸图像的优异的表征能力、S-ISOMAP的非线性维数约简能力,使得该方法对光照和表情变化等具有良好的鲁棒性.在YaleB和PIE人脸库上的实验表明了该方法的有效性. 相似文献
8.
蒋桂莲 《计算机与数字工程》2010,38(6):138-141
人脸识别方法易受光照、姿态和表情变化的影响,针对这一问题,提出了一种基于Gabor小波和粗糙集属性约简的人脸识别方法。该方法先对人脸图像进行Gabor小波变换,将小波变换的系数作为人脸图像的特征向量;然后结合信息论中信息熵与互信息的概念定义了粗糙集里的一种新的属性重要度,并以此属性重要度为启发式信息进行约简数据集,从而对所得的人脸图像特征进行降维,并采用支持向量机进行分类。实验结果表明,该算法降低了支持向量机分类器的复杂度,有较好的识别性能。 相似文献
9.
由于热红外人脸图像具有防伪装、防欺诈以及独立于环境光照的特点,所以近年来热红外人脸识别问题备受关注。提出一种基于Gabor小波和SVD的热红外人脸识别新方法。对归一化后的热红外人脸图像进行多方向多尺度Gabor变换,得到多个Gabor特征矩阵;对每个矩阵进行奇异值分解,并把每个矩阵最大的奇异值组合起来作为最终的热红外人脸特征向量;使用径向基神经网络进行分类识别。在自建热红外人脸数据库上的实验结果表明,相比于传统的识别方法,该方法具有较好的识别效果。 相似文献
10.
二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的“小样本”效应,支持向量机(SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽略高频分量;然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用“一对多”的SVM多类分类算法完成人脸识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。 相似文献
11.
基于ULBP特征子空间的2DLDA人脸识别方法 总被引:1,自引:0,他引:1
将图像层次化分割并提取各个图像子块的均匀模式的局部二值模式(ULBP)直方图特征,在考虑到全局及局部特征的同时,将处理空间从灰度空间投影到ULBP特征子空间,有效消除行向量之间的相关性,从而使应用行二维线性鉴别分析处理得到的鉴别投影矩阵性能更优.在ORL、YALE及FERET人脸库上与基于二维线性鉴别分析的方法及基于多级局部二值模式的方法对比,结果显示文中方法维数更低,识别率更高,从而验证文中方法的有效性. 相似文献
12.
提出了一种基于三次B样条小波和2DFFT-2DLDA的人脸识别方法,用三次B样条小波对人脸图像进行多层分解,得到一幅低频子图和3幅边缘细节子图,选取其中两幅效果最好的子图进行二维傅里叶变换后将其连接形成一个特征向量,然后进行2DLDA处理产生最终的特征表达,最后使用最近邻法进行分类。在JAFFE和Yale人脸库中的实验表明算法具有比频谱脸算法和Gabor-2DLDA算法更高的识别率,同时具有很低的算法复杂度。 相似文献
13.
14.
提出了一种基于Gabor小波的多尺度PCA支持向量机人脸识别方法.该方法首先计算5个尺度和8个方向的Gabor小波变换结果,再把不同人脸中的同一尺度和方向的变换结果进行特征重组,得到40个新的特征矩阵,然后分别利用PCA降维去噪,最后构造40个支持向量机分类器并采用选票决策机制决定识别结果.实验结果表明,该方法不仅拓宽了主元分析法中累积方差贡献率可选范围,而且识别率受支持向量机核参数影响较小,使得支持向量机的核参数易于选择.同时取得了理想的识别效果. 相似文献
15.
由于Gabor小波和贝叶斯方法都可以通过不同的机制来减少类内差异,提出了融合Gabor和贝叶斯的人脸识别方法。该方法首先通过人脸图像特征点与Gabor滤波器的卷积来提取特征,借鉴“作差法”形成“类内差”和“类间差”空间,并用2DPCA对差异空间进行降维,最后用贝叶斯方法进行分类。通过在AR和FERET人脸库上的实验表明,与传统的方法相比较,该方法降低了运算量,提高了识别率,对具有表情及光照变化的人脸具有较高的识别率。 相似文献
16.
韩璐 《计算机技术与发展》2012,(9):87-90
局部保持投影(locality preserving projection,LPP)和线性鉴别分析(linear discrimin antanalysis,LDA)是两种有效的一维特征提取方法,广泛应用于人脸识别领域。但采用一维特征提取方法时会存在列向量化时样本的结构信息被破坏和样本在提取特征时必须对协方差矩阵进行特征分解,对于高维小样本的问题很容易出现协方差矩阵奇异的问题。文中提出将二维局部保持投影(2DLPP)和二维线性鉴别分析(2DLDA)这两种方法在特征层进行融合并应用在人脸识别。基于人脸库AR上的实验表明,该方法比传统的IJPP和LDA识别性能更高,因此可作为一种新的人脸识别方法。 相似文献
17.
18.
针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行优化,使LPP成为有监督的非线性学习方法,采用改进的LPP(ILPP)算法对训练集图像进行二次投影,提取样本的局部流形信息,并作为人脸识别信息进行鉴别。在Yale和ORL人脸库的测试结果验证了该方法的有效性。 相似文献
19.
基于Gabor小波与共同向量的人脸识别方法 总被引:1,自引:0,他引:1
基于子空间的人脸识别方法易受光照、姿态和表情变化的影响,针对这一问题,提出一种基于Gabor滤波器与共同向量(CV)方法相结合的人脸识别方法.Gabor滤波器因其良好的方向与尺度选择性,能很好地提取图像局部特征,对光照、姿态、表情变化有一定的健壮性;共同向量方法是一种线性子空间分类方法,利用提取的同类样本的共同属性(共同分量)对测试样本进行分类,在训练样本较少的情况下能够取得较好的分类效果.通过在ORL与Yale数据库上的实验表明,提出的方法具有较好的识别效果. 相似文献
20.
张博 《数字社区&智能家居》2009,5(1):186-188
二维投影利用表示图像的矩阵直接抽取特征.计算量主要与图像的大小有关,能适用于大类别的人脸识别。针对二维投影抽取出的特征是矩阵,存在特征之间的冗余度大、特征数量多、不利于存储和分类等弱点,该文通过二维投影后的样本再作一次向量形式的特征抽取办法进一步降低二维投影抽取出的特征数量,并缩短了特征识别时间。计算机仿真研究验证了所提出方法的正确性。 相似文献