首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective was to investigate the associations between body condition scores (BCS) and daily body weight (BW) in the first 150 d of lactation (DIM) and reproductive performance in high-producing dairy cows. Data included automated daily BW measurements and BCS of 2,020 Israeli Holstein cows from 7 commercial farms. Individual BW series were smoothed using penalized cubic splines, and variables representing BW patterns were generated. The presence of 7- and 21-d cycles in BW was determined using time-series analysis. Associations between BW and BCS and conception at first artificial insemination (AI) were analyzed using generalized estimating equations. Multivariate survival analysis was used for associations between BW and BCS and the calving-to-first AI interval, first AI-to-conception interval, and calving-to-conception interval. First-parity cows that lost ≥12% and second-parity cows that lost ≥15% of their BW from calving to nadir BW were less likely to conceive at first AI. Cows without 7-d cycles in BW were 1.48 times more likely to conceive at first AI relative to cows with 7-d cycles. The odds of conceiving at first AI increased by 53% for each additional unit in BCS from 40 to 60 DIM. In the multivariate survival analysis, a BCS of ≤2.5 between 40 and 60 DIM, the percentage of BW lost from calving to nadir BW, and a BW loss of ≥7% from calving to 10 DIM were associated with reduced reproductive performance. The presence of 21-d cycles in BW was associated with high reproductive performance in first-parity [odds ratio (OR) = 1.18] and second-parity cows (OR = 1.22). The presence of 7-d cycles in BW was associated with low reproductive performance in first-parity cows (OR = 0.77), but not in older cows. Based on previous findings and on the associations found in this study, we postulate that 21-d cycles are probably related to the sexual cycle and could be used as a proxy for assessing ovarian activity. Variables representing relative BW loss (%) were better predictors for impaired reproductive performance than those representing absolute BW loss (kg) and may be more suitable for estimating individual adaptation to negative energy balance in herds for which automated daily BW is available.  相似文献   

2.
The objective of this study was to determine if an association existed among body condition score (BCS), body weight (BW), and udder health, as indicated by somatic cell score (SCS) and cases of clinical mastitis (CM). The data consisted of 2,635 lactations from Holstein-Friesian (n = 523) and Jersey (n = 374) cows in a seasonal calving pasture-based research herd between the years 1986 and 2000, inclusive. Increased BCS at calving was associated with reduced SCS in first- and second-parity cows, and greater SCS in cows of third parity or greater. This relationship persisted for most BCS traits throughout lactation. Body weight was positively associated with SCS, although the effect was greater in Jersey cows than in Holstein-Friesians. Increased BCS and BW loss in early lactation were associated with lower SCS and a reduced probability of a high test-day SCC. Body condition score was not significantly related to CM with the exception of a curvilinear relationship between the daily rate of BCS change to nadir and CM in early lactation. Several BW variables were positively associated with a greater likelihood of CM. Nevertheless, most associations with udder health lacked biological significance within the ranges of BCS and BW generally observed on-farm. Results are important in assuring the public that modern dairy systems, where cows are subjected to substantial amounts of BCS mobilization in early lactation, do not unduly compromise cow udder health.  相似文献   

3.
The objective was to determine whether transfer of fresh or vitrified embryos produced in vitro with sex-sorted semen improves pregnancy and calving rates during summer in lactating dairy cows compared with artificial insemination (AI). Lactating dairy cows (n = 722) were enrolled during summer months at 2 commercial dairies in Central Texas and randomly assigned to 1 of 3 treatments: AI with conventional semen (n = 227), embryo transfer-vitrified (ET-V; n = 279) or embryo transfer-fresh (ET-F; n = 216). Embryos were produced in vitro using sex-sorted semen and with Block-Bonilla-Hansen-7 culture medium. For vitrification, grade 1 expanded blastocysts were harvested on d 7 after fertilization and vitrified using the open-pulled straw method. Fresh embryos were grade 1 blastocysts and expanded blastocysts harvested on d 7 after fertilization. Cows were submitted to the Ovsynch56 protocol: d −10 GnRH, d −3 PGF, d −1 GnRH and d 0 timed AI; or Select Synch protocol: d −9 GnRH, d −2 PGF, and AI following detected estrus (day of AI = d 0). On d 7, all cows were examined for presence of a corpus luteum (CL). A vitrified or fresh embryo was transferred to cows with CL in ET-V and ET-F groups. Cows were considered synchronized if progesterone was <1 ng/mL on d 0 and a CL was present on d 7. At d 40 ± 7 of gestation, the percentage of cows pregnant was greater for the ET-F compared with the ET-V and AI groups among all cows (42.1 vs. 29.3 and 18.3%, respectively) and synchronized cows (45.5 vs. 31.6 and 24.8%, respectively). Also, the percentage of cows pregnant was greater for the ET-V than the AI group among all cows and tended to be greater among synchronized cows. At d 97 ± 7 of gestation, the percentage of cows pregnant among all cows was greater for ET-F and ET-V groups than for the AI group (36.4 and 25.7 vs. 17.0%, respectively) and the percentage for the ET-F group was greater than for the ET-V group. Among synchronized cows, the percentage of cows pregnant was significantly increased for the ET-F group than for ET-V and AI groups (39.4 vs. 27.8 and 23.1%, respectively) and no difference was found between ET-V and AI groups. No effect of treatment on embryo loss was observed. The percentage of cows with live births was significantly increased for the ET-F than for ET-V and AI groups among all cows (27.5 vs. 17.1 and 14.6%, respectively) and synchronized cows (29.9 vs. 18.5 and 20.0%, respectively). The percentage of cows giving birth to a live heifer was significantly increased for the ET-F and ET-V groups compared with the AI group among all cows (79.1 and 72.5 vs. 50.0%, respectively) and synchronized cows (79.1 and 72.5 vs. 50.0%, respectively). No difference existed between ET-F and ET-V groups for percent live heifer births but both were greater than for the AI group. The transfer of fresh embryos produced in vitro using sex-sorted semen to lactating dairy cows during summer can effectively increase the percentage of cows that establish pregnancy and also the percentage of cows that give birth to a live heifer compared with percentages from AI with conventional semen.  相似文献   

4.
The objective of this study was to compare circulating progesterone (P4) profiles and pregnancies per AI (P/AI) in lactating dairy cows bred by timed artificial insemination (TAI) following Ovsynch-56 after 2 different presynchronization protocols: Double-Ovsynch (DO) or Presynch-Ovsynch (PS). Our main hypothesis was that DO would increase fertility in primiparous cows, but not in multiparous cows. Within each herd (n = 3), lactating dairy cows (n = 1,687; 778 primiparous, 909 multiparous) were randomly assigned to DO [n = 837; GnRH-7d-PGF-3d-GnRH-7d-Ovsynch-56 (GnRH-7d-PGF-56h-GnRH-16hTAI)] or PS (n = 850; PGF-14d-PGF-12d-Ovsynch-56). In 1 herd, concentrations of P4 were determined at the first GnRH (GnRH1) of Ovsynch-56 and at d 11 after TAI (n = 739). In all herds, pregnancy was diagnosed by palpation per rectum at 39 d. In 1 herd, the incidence of late embryo loss was determined at 74 d, and data were available on P/AI at the subsequent second service. Presynchronization with DO reduced the percentage of animals with low P4 concentrations (<0.50 ng/mL) at GnRH1 of Ovsynch-56 (5.4 vs. 25.3%, DO vs. PS). A lesser percentage of both primiparous and multiparous cows treated with DO had low P4 concentrations at GnRH1 of Ovsynch-56 (3.3 vs. 19.7%, DO vs. PS primiparous; and 8.8 vs. 31.9%, DO vs. PS multiparous). Presynchronization with DO improved P/AI at the first postpartum service (46.3 vs. 38.2%, DO vs. PS). Statistically, a fertility improvement could be detected for primiparous cows treated with DO (52.5 vs. 42.3%, DO vs. PS, primiparous), but only a tendency could be detected in multiparous cows (40.3 vs. 34.3%, DO vs. PS, multiparous), consistent with our original hypothesis. Presynchronization treatment had no effect on the incidence of late embryo loss after first service (8.5 vs. 5.5%, DO vs. PS). A lower body condition score increased the percentage of cows with low P4 at GnRH1 of Ovsynch-56 and reduced fertility to the TAI. In addition, P4 concentration at d 11 after TAI was reduced by DO. The method of presynchronization at first service had no effect on P/AI at the subsequent second service (34.7 vs. 36.5%, DO vs. PS). Thus, presynchronization with DO induced cyclicity in most anovular cows and improved fertility compared with PS, suggesting that DO could be a useful reproductive management protocol for synchronizing first service in commercial dairy herds.  相似文献   

5.
An adequate and clean artificial insemination (AI) technique is recommended to improve reproductive outcomes in dairy cattle. The objective of this study was to evaluate the effectiveness of using protective plastic sheaths (PS) to minimize contamination of the AI catheter (AIC) on pregnancies per AI (PAI) in lactating dairy cattle. Lactating cows housed in freestall barns on a commercial dairy farm were presynchronized with 2 injections of PGF given 14 d apart (starting at 26 ± 3 d postpartum) followed by Ovsynch (GnRH-7 d-PGF-56 h-GnRH-16 h-timed-AI; TAI) 12 d later. Cows presenting signs of standing heat any time during the protocol received AI, whereas the remaining animals were subjected to TAI 16 h after second Ovsynch GnRH. At the time of AI (1 AI technician), 996 services from 773 lactating dairy cows were randomly assigned to 1 of the 2 groups; with (TRT, n = 487) or without (CON, n = 509) the use of disposable PS. In the TRT group, the AIC protected with a PS was introduced into the vagina; once in the cranial portion of the vagina adjacent to the cervical os, the PS was pulled back and only the AIC was manipulated through the cervix into the uterine body for semen deposition. In the CON group, cows were inseminated without the use of PS. Samples were taken with a sterile cotton swab from the tip of the AIC (n = 51) after AI from both treatment groups. Pregnancy diagnosis was determined by ultrasonography 39 ± 3 d after AI. Cultured swab samples revealed that the use of PS was effective in minimizing contamination of the AIC (positive bacterial growth: TRT = 61.53% vs. CON = 100%). Overall, the proportion of cows pregnant was greater for cows in TRT (42.7) compared with the CON group (36.1). For first services postpartum, PAI did not differ between CON (43.01%, n = 194) and TRT (43.8%, n = 182) groups. However, PAI for second or greater services were greater in TRT (43.8%, n = 305) than in CON cows (32.3%, n = 315). Results from this study provided evidence that the use of PS during AI improved PAI for second or greater services in lactating dairy cows. Performing a clean AI technique through the use of PS may be an effective strategy to improve reproductive outcomes in dairy cattle.  相似文献   

6.
Data from 113 lactations across 76 cows between the years 2002 to 2004 were used to determine the effect of strain of Holstein-Friesian (HF) dairy cow and concentrate supplementation on milk production, body weight (BW), and body condition score (BCS; 1 to 5 scale) lactation profiles. New Zealand (NZ) and North American (NA) HF cows were randomly allocated to 1 of 3 levels of concentrate supplementation [0, 3, or 6 kg of dry matter (DM)/cow per d] on a basal pasture diet. The Wilmink exponential model was fitted within lactation (YDIM = a + b e(−0.05 × DIM) + c × DIM). The median variation explained by the function for milk yield was 86%, between 62 and 69% for milk composition, and 80 and 70% for BW and BCS, respectively. North American cows and cows supplemented with concentrates had greater peak and 270-d milk yield. Concentrate supplementation tended to accelerate the rate of incline to peak milk yield, but persistency of lactation was not affected by either strain of HF or concentrate supplementation. No significant strain by diet interaction was found for parameters reported. New Zealand cows reached nadir BCS 14 d earlier and lost less BW (22 kg) postcalving than NA cows. Concentrate supplementation reduced the postpartum interval to nadir BW and BCS, and incrementally increased nadir BCS. New Zealand cows gained significantly more BCS (i.e., 0.9 × 10−3 units/d more) postnadir than NA cows, and the rate of BCS replenishment increased linearly with concentrate supplementation from 0.5 × 10−3 at 0 kg of DM/d to 0.8 × 10−3 and 1.6 × 10−3 units/d at 3 and 6 kg of DM/d concentrates, respectively. Although there was no significant strain by diet interaction for parameters reported, there was a tendency for a strain by diet interaction in 270-d BCS, suggesting that the effect of concentrate supplementation on BCS gain was, at least partly, strain dependent.  相似文献   

7.
The objectives of this study were to evaluate the effect of administering 500 mg of recombinant bovine somatotropin (bST) every 10 d on ovulatory responses, estrous behavior, and fertility of lactating Holstein cows. Lactating dairy cows were assigned to 1 of 2 treatments: a control with no administration of bST (73 primiparous and 120 multiparous cows) or 6 consecutive administrations of 500 mg of bST (83 primiparous and 123 multiparous cows) given subcutaneously at 10-d intervals starting 61 ± 3 d postpartum (study d 0), concurrent with the initiation of the timed artificial insemination (AI). Blood samples were collected thrice weekly from 61 ± 3 to 124 ± 3 d in milk (DIM), and plasma samples were analyzed for concentrations of estradiol, glucose, insulin, insulin-like growth factor 1, and progesterone. The estrous cycle of cows was presynchronized with 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, and the Ovsynch timed AI protocol was initiated at 61 ± 3 DIM. Ovaries were scanned to determine ovulatory responses during the Ovsynch protocol. Pregnancy was diagnosed at 33 and 66 d after AI. Body condition was scored on study d 0, 10, 42, and 76. Sixty-four cows were fitted with a pressure mounting sensor with radiotelemetric transmitters to monitor estrous behavior. Treatment of lactating dairy cows with 500 mg of bST at 10-d intervals increased yields of milk and milk components in the first 2 mo after treatment. Body condition of bST-treated cows remained unaltered, whereas control cows gained BCS. Treatment with bST increased concentrations of insulin-like growth factor 1 chronically, but concentrations of insulin and glucose increased only transiently in the first 7 d after the first injection of bST. Concentrations of progesterone during and after the Ovsynch protocol remained unaltered after treatment with bST; likewise, ovulatory responses during the Ovsynch protocol were mostly unaltered by treatment. Concentration of estradiol tended to be greater for bST cows than for control cows immediately before induction of ovulation in the Ovsynch protocol. Similarly, the mean and the peak concentrations of estradiol were greater for bST cows than for control cows when monitored during spontaneous estrus. Nevertheless, duration of estrus and the median number of standing events were less for bST cows than for control cows. Pregnancies per AI after the first and second postpartum inseminations were not affected by bST treatment. Treatment of lactating dairy cows with 500 mg of bST every 10 d improved lactation performance, but it did not affect pregnancies per AI and it reduced expression of estrus.  相似文献   

8.
Objectives were to evaluate 3 resynchronization protocols for lactating dairy cows. At 32 ± 3 d after pre-enrollment artificial insemination (AI; study d −7), 1 wk before pregnancy diagnosis, cows from 2 farms were enrolled and randomly assigned to 1 of 3 resynchronization protocols after balancing for parity, days in milk, and number of previous AI. All cows were examined for pregnancy at 39 ± 3 d after pre-enrollment AI (study d 0). Cows enrolled as controls (n = 386) diagnosed not pregnant were submitted to a resynchronization protocol (d 0-GnRH, d 7-PGF, and d 10-GnRH and AI) on the same day. Cows enrolled in the GGPG (GnRH-GnRH-PGF-GnRH) treatment (n = 357) received a GnRH injection at enrollment (d −7) and if diagnosed not pregnant were submitted to the resynchronization protocol for control cows on d 0. Cows enrolled in CIDR treatment (n = 316) diagnosed not pregnant received the resynchronization protocol described for control cows with addition of a controlled internal drug release (CIDR) insert containing progesterone (P4) from d 0 to 7. In a subgroup of cows, ovaries were scanned and blood was sampled for P4 concentration on d 0 and 7. After resynchronized AI, cows were diagnosed for pregnancy at 39 ± 3 and 67 ± 3 d (California herds) or 120 ± 3 d (Arizona herds). Cows in the GGPG treatment had more corpora lutea than CIDR and control cows on d 0 (1.30 ± 0.11, 1.05 ± 0.11, and 1.05 ± 0.11, respectively) and d 7 (1.41 ± 0.14, 0.97 ± 0.13, and 1.03 ± 0.14, respectively). A greater percentage of GGPG cows ovulated to GnRH given on d 0 compared with CIDR and control cows (48.4, 29.6, and 36.6%, respectively), but CIDR and control did not differ. At 39 ± 3 d after resynchronized AI, pregnancy per AI (P/AI) was increased in GGPG (33.6%) and CIDR (31.3%) cows compared with control (24.6%) cows. At 67 or 120 ± 3 d after resynchronized AI, P/AI of GGPG and CIDR cows was increased compared with control cows (31.2, 29.5, and 22.1%, respectively). Presynchronizing the estrous cycle of lactating dairy cows with a GnRH 7 d before the start of the resynchronization protocol or use of a CIDR insert within the resynchronization protocol resulted in greater P/AI after resynchronized AI compared with control cows.  相似文献   

9.
The objective was to study the effects of body condition score (BCS) at calving on dairy performance, indicators of fat and protein mobilization, and metabolic and hormonal profiles during the periparturient period of Holstein-Friesian cows. Twenty-eight multiparous cows were classed according to their BCS (0 to 5 scale) before calving as low (BCS ≤2.5; n = 9), medium (2.75 ≤ BCS ≤ 3.5; n = 10), and high (BCS ≥3.75; n = 9), corresponding to a mean of 2.33, 3.13, and 4.17 points of BCS, and preceding calving intervals of 362, 433, and 640 d, respectively. Cows received the same diets based on preserved grass to allow ad libitum feed intake throughout the study, and lactation diet contained 30% of concentrate (dry-matter basis). Measurements and sampling were performed between wk −4 and 7 relative to calving. No significant effects were observed of BCS group on dry matter intake (kg/d), milk yield, BCS loss, plasma glucose, and insulin concentrations. The high-BCS group had the lowest postpartum energy balance and the greatest plasma concentrations of leptin prepartum, nonesterified fatty acids and β-hydroxybutyrate postpartum, insulin-like growth factor 1, and milk fat content. Milk fat yield was greater for the high- than the low-BCS group (1,681 vs. 1,417 g/d). Low-BCS cows had the greatest concentration of medium-chain fatty acids (e.g., sum of 10:0 to 15:0, and 16:0), and the lowest concentration and secretion of preformed fatty acids (e.g., cis-9 18:1) in milk fat. Milk protein secretion was lowest in the low-BCS group, averaging 924, 1,051, and 1,009 g/d for low-, medium-, and high-BCS groups, respectively. Plasma 3-methylhistidine was greater in wk 1 and 2 postpartum compared with other time points, indicating mobilization of muscle protein. Plasma creatinine tended to be lower and the 3-methylhistidine: creatinine ratio was greater in low- compared with medium- and high-BCS cows, suggesting less muscle mass but more intense mobilization of muscle protein in lean cows. High-BCS cows were metabolically challenged during early lactation due to intense mobilization of body fat. Conversely, limited availability of body fat in low-BCS cows was associated with increased plasma indicators of body protein mobilization during the first weeks of lactation, and lower milk protein secretion. These results should be confirmed using an experimental approach where calving BCS variation would be controlled by design.  相似文献   

10.
Body condition scoring, an indirect measure of the level of subcutaneous fat in dairy cattle, has been widely adopted for research and field assessment or for management purposes on farms. The feasibility of utilizing digital images to determine body condition score (BCS) was assessed for lactating dairy cows at the Scottish Agricultural College Crichton Royal Farm. Two measures of BCS were obtained by using the primary systems utilized in the United Kingdom (UK-BCS) and the United States (USBCS). Means were 2.12 (±0.35) and 2.89 (±0.40), modes were 2.25 and 2.75, and ranges were 1.0 to 3.5 and 1.5 to 4.5 for the UKBCS (n = 2,346) and USBCS (n = 2,571), respectively. Up to 23 anatomical points were manually identified on images captured automatically as cows passed through a weigh station. Points around the hooks were easier to identify on images than points around pins and the tailhead. All identifiable points were used to define and formulate measures describing the cow's contour. For both BCS systems, hook angle, posterior hook angle, and tailhead depression were significant predictors of BCS. When the full data set testing only the angles around the hooks was used, 100% of predicted BCS were within 0.50 points of actual USBCS and 92.79% were within 0.25 points; and 99.87% of predicted BCS were within 0.50 points of actual UKBCS and 89.95% were within 0.25 points. In a reduced data set considering only observations in which the tailhead depression angle was available, adding the tailhead depression to models did not improve model predictions. The relationships of the calculated angles with USBCS were stronger than those with UKBCS. This research demonstrates the potential for using digital images for assessing BCS. Future efforts should explore ways to automate this process by using a larger number of animals to predict scores accurately for cows across all levels of body condition.  相似文献   

11.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

12.
The objective of this study was to examine the effects of live yeast (LY) supplementation and body condition score (BCS, 1-5 scale) at calving on milk production, metabolic status, and rumen physiology of postpartum (PP) dairy cows. Forty Holstein-Friesian dairy cows were randomly allocated to a 2 × 2 factorial design and blocked by yield, parity, BCS, and predicted calving date. Treatments were body condition at calving (low for BCS ≤3.5 or high for BCS ≥3.75; n = 20) and supplementation with LY (2.5 and 10 g of LY/d per cow for pre- and postcalving, respectively; control, no LY supplementation; n = 20). The supplement contained 109 cfu of Saccharomyces cerevisiae/g (Yea-Sacc1026 TS, Alltech Inc., Nashville, TN). Daily milk yield, dry matter intake, milk composition, BCS, body weight, and backfat thickness were recorded. Blood samples were harvested for metabolite analysis on d 1, 5, 15, 25, and 35 PP. Liver samples were harvested by biopsy for triacylglycerol (TAG) and glycogen analysis on d 7 precalving, and on d 7 and 21 PP. Rumen fluid was sampled by rumenocentesis for all cows on d 7 and 21 PP. Supplementation with LY had no effect on milk yield, dry matter intake, rumen fluid pH, or blood metabolites concentration of dairy cows with high or low BCS at calving. Feeding LY increased rumen acetate proportion and protozoal population, tended to increase liver glycogen, and decreased rumen ammonia nitrogen during early lactation. Over-conditioned cows at calving had greater body reserve mobilization and milk production and lower feed intake, whereas cows with a moderate BCS at calving had greater feed intake, lower concentrations of nonesterified fatty acids and β-hydroxybutyrate, lower liver TAG and TAG:glycogen ratio, and faster recovery from body condition loss. Additionally, the data suggest that concentrations of liver enzymes in blood might be used as an indicator for liver TAG:glycogen ratio. Results indicate that in the case of this experiment, where the control treatment was associated with an acceptable rumen pH, feeding yeast did not significantly improve indicators of energy status in dairy cows.  相似文献   

13.
(Co)variance components for body condition score (BCS), body weight (BW), BCS change, BW change, and milk yield traits were estimated. The data analyzed included 6646 multiparous Holstein-Friesian cows with records for BCS, BW, and(or) milk yield at different stages of lactation from 74 dairy herds throughout Southern Ireland. Heritability estimates for BCS ranged from 0.27 to 0.37, while those for BCS change ranged from 0.02 to 0.10. Heritability estimates for BW records varied from 0.39 to 0.50, while heritabilities for BW change were similar to those observed for BCS change (0.03 to 0.09). The genetic correlations between BCS and BW at the same days in milk deviated little from 0.50, and the genetic correlations between BCS change and BW change over the same period ranged from 0.42 to 0.55. BCS and BW directly postpartum were both phenotypically and genetically negatively correlated with both BW change and BCS change in early lactation. The genetic correlations between BCS and milk yield were negative. The results of the present study show that animals that lose most BCS in early lactation tend to gain most BCS in late lactation, a trend also exhibited by BW.  相似文献   

14.
The objective of the experiment was to determine the effects of fat supplementation on embryo quality of dairy cows and the subsequent success of embryo transfer into recipient heifers fed the same sources of fat. A total of 30 lactating Holstein cows were allotted on d 18 postpartum to 2 groups of 15 donor cows blocked for similar calving dates. Total mixed diets based on silage and fat supplements were fed for ad libitum intake. On a dry matter basis, diets fed to donor cows contained 7.9% whole flaxseed or 2.8% calcium salts of palm oil and those fed to recipient heifers contained 11.4% whole flaxseed or 4.2% calcium salts of palm oil. The experiment with donor cows was carried out between d 18 and 109 of lactation. The experimental diets were fed to 121 recipient heifers from wk 8 before estrus synchronization and superovulation to d 50 of gestation. Dietary fat fed to donor cows had no effect on the number of viable embryos per cow (3.7 ± 0.5), the number of degenerated embryos per cow (1.8 ± 0.4), or the number of unfertilized oocytes per cow (2.1 ± 0.8). But feeding flaxseed decreased fertilization rate (64.3 vs. 78.4%) and the percentage of grade 1 to 2 embryos (56.5 vs. 74.1%) and increased the embryo degeneration percentage (27.4 vs. 18.2%) compared with feeding calcium salts of palm oil. There was no effect of diets fed to donor cows and those fed to recipient heifers for pregnancy rate of heifers. Supplementation with a rich source of n-3 fatty acids decreased quality of embryos from donor lactating dairy cows compared with feeding calcium salts of palm oil, but had no effect on the subsequent pregnancy rate of heifers receiving frozen grade-1 embryos.  相似文献   

15.
The objective of this study was to evaluate the effects of claw horn disruption lesions (CHDL; sole ulcers and white line disease) and body condition score (BCS) at dry-off on survivability, milk production, and reproductive performance during the subsequent lactation. An observational prospective cohort study was conducted on a large commercial dairy in Cayuga County, New York, from September 2008 until January 2009. A total of 573 cows enrolled at dry-off were scored for body condition and hoof trimmed; digits were visually inspected for the presence of CHDL. The BCS data were recategorized into a 3-level variable BCS group (BCSG), with cows with BCS <3 placed in BCSG 1 (n = 113), cows with BCS = 3 placed in BCSG 2 (n = 254), and cows with BCS >3 placed in BCSG 3 (n = 206). Cows in BCSG 2 were 1.35 and 1.02 times more likely to conceive than cows in BCSG 1 and 3, respectively. The cull/death hazard for BCSG 1 cows was 1.55 and 1.47 times higher than for cows in BCSG 2 and BCSG 3, respectively. Milk yield for cows in BCSG 2 (44.6 kg/d, 95% CI 43.4-45.8) was significantly greater than that for cows in BCSG 1 (41.5 kg/d, 95% CI 39.8-43.3). Cows with previous lactation days open ≤91 had 1.6 times higher odds of being classified into BCSG 1 at dry-off; cows with previous lactation mature-equivalent 305-d milk >14,054 kg had a similar 1.6 times higher odds of being classified into BCSG 1. Claw horn disruption lesions were found in 24.4% of the cows (n = 140) at dry-off. Cows without CHDL were 1.4 times more likely to conceive than cows with CHDL. Additionally, lesion cows were 1.7 times more likely to die or be culled than nonlesion cows. Absence of CHDL did not have a significant effect on milk yield. These findings highlight the importance of claw health and BCS at the end of lactation on future survival and performance.  相似文献   

16.
The Ovsynch protocol was designed to synchronize ovulation, thereby allowing timed artificial insemination (TAI) of all cows without detection of estrus. However, the effectiveness of Ovsynch in different breeds of dairy cows has not been previously compared. The aim of this study was to compare the response to Ovsynch in cycling lactating Holstein-Friesian (HF) and Swedish Red (SR) dairy cows. A total of 495 cyclic cows (n = 347 HF, n = 148 SR) were housed together and treated with Ovsynch (GnRH - 7 d - PGF - 56 h - GnRH - 16 to 18 h - TAI). Ovulatory responses, synchronization rate, maximal follicle size at the time of AI, and percentage of pregnant cows per AI (P/AI at 31 and 62 d after AI) were compared between breeds. Ultrasonography was performed during Ovsynch at first GnRH, PGF, at time of AI, and 7 d after AI. Ovulatory response and synchronization rate were similar in HF versus SR cows (60.2 vs. 62.2%; 88.4 vs. 88.5%, respectively). Cows that ovulated to the first GnRH of Ovsynch had smaller follicle size at AI (15.9 ± 0.1 vs. 16.4 ± 0.2 mm). Maximal follicle size at AI was greater for HF (16.4 ± 2.2 mm) than SR (15.5 ± 2.3 mm) cows. The P/AI was greater for SR than HF cows at the 62-d pregnancy diagnosis (56.1 vs. 46.1%). In addition, pregnancy loss between 31 and 62 d of pregnancy was greater in HF (10.1%) than SR (3.5%) cows. Fertility was less in HF cows during the hot season (57.7 in cold vs. 38.1% in the hot season), whereas such a decrease was not observed in SR (60.0 in cold vs. 53.5% in the hot season) cows. Thus, although the GnRH treatments of Ovsynch were equally effective in SR and HF cows, pregnancy outcomes (P/AI at d 62 and pregnancy survival) were greater in SR than HF cows, and P/AI in SR cows was not compromised during the hot season as was found for HF cows.  相似文献   

17.
The objective of this study was to quantify the effect of periparturient body condition score (BCS) and body weight (BW) related traits on the incidence of calving dystocia and stillbirths, and to determine any consequent effect of dystocia and stillbirths on BCS, BW, milk production, udder health, and fertility in grazing Holstein-Friesian dairy cows. Up to 2,384 lactation records with data on calving dystocia or stillbirths were available from one research herd across 15 yr. Mixed models and generalized estimating equations were used to quantify all effects. Body condition score or BW 8 wk precalving or at calving, or change precalving did not significantly affect the odds of a difficult calving or stillbirth. Cows that experienced dystocia lost, on average, more BCS and BW between calving and nadir and had significantly reduced nadir BCS and BW. Incidence of stillbirths did not affect BCS in early lactation, although BW loss postpartum was greater following a stillbirth. A dystocia or stillbirth event was associated with reduced 60-d milk yield (42 and 52 kg less milk produced following a difficult calving or a stillbirth, respectively). The effect of stillbirth on milk yield was independent of dystocia. Cows that experienced dystocia had reduced milk concentration of fat, protein, and lactose, whereas average somatic cell score (natural logarithm of somatic cell count) in the first 60-d postpartum was elevated. There was no significant effect of dystocia or stillbirth on clinical mastitis, but pregnancy rates to first service and throughout the 12-wk breeding season were compromised in cows that had experienced difficulty at calving. The significance of the effects of stillbirth on somatic cell score and reduced fertility were mediated through its association with dystocia. In conclusion, periparturient BCS and BW within the range observed in the current study did not significantly affect incidence of dystocia and stillbirth, but these events negatively affected cow performance in early lactation.  相似文献   

18.
Infertility in dairy cattle is a multifactorial problem that may be linked to follicle development and the quality of the ovulated oocyte, to sperm transport and fertilization, to the reproductive tract environment, or to a combination of these factors. Using a state-of-the-art endoscopic embryo transfer technique, the aim of this study was to compare the ability of the reproductive tract of postpartum dairy cows and nulliparous heifers to support the development of early embryos to the blastocyst stage. Bovine embryos of 2 to 4 cells (n = 1,800) were produced by in vitro maturation and fertilization of oocytes derived from the ovaries of slaughtered cattle. The estrus cycles of nulliparous Holstein heifers (n = 10) and postpartum Holstein cows (n = 8, approximately 60 d postpartum) were synchronized using an 8-d controlled internal drug release device coupled with prostaglandin injection. On d 2, one hundred 2- to 4-cell embryos were endoscopically transferred to the oviduct ipsilateral to the corpus luteum. Five days later, on d 7, the oviduct and uterus were flushed nonsurgically to recover the embryos. The number of embryos developing to the blastocyst stage was recorded immediately at recovery and following overnight culture in vitro. A representative number of blastocysts from heifers and cows were stained to assess cell number. Progesterone concentrations were lower in cows than in heifers on d 5, 6, and 7 (d 7 = 2.39 ± 0.33 vs. 5.34 ± 0.77 ng/mL, respectively). More embryos were recovered from heifers than cows (79.0 ± 7.0 vs. 57.2 ± 11.4%). Of the embryos recovered, 33.9 ± 3.6% had developed to the blastocyst stage in the heifer oviduct compared with 18.3 ± 7.9% in the postpartum cow oviduct. There was no evidence of a difference in blastocyst quality as evidenced by total cell number in the blastocysts (71.2 ± 5.7 vs. 67.0 ± 5.3, respectively). In conclusion, the reproductive tract of the postpartum lactating dairy cow may be less capable of supporting early embryo development than that of the nonlactating heifer, and this may contribute to the lower conception rates observed in such animals.  相似文献   

19.
The objective was to determine the effect of exogenous progesterone (P4) in a timed artificial insemination (TAI) protocol initiated at 2 different times post-AI on pregnancies per AI (P/AI) in lactating dairy cows. Cows (n = 1,982) in 5 dairy herds were assigned randomly at a nonpregnancy diagnosis 32 ± 3 d post-AI to 1 of 4 resynchronization (RES) treatments arranged in a 2 × 2 factorial design using the Ovsynch-56 (GnRH, 7 d later PGF, 56 h later GnRH, 16 h later TAI) protocol. Treatments were as follows: cows initiating RES 32 ± 3 d after AI with no supplemental P4 (d 32 RES-CON; n = 516); same as d 32 RES-CON plus a controlled internal drug release (CIDR) insert containing P4 at the onset of Ovsynch-56 (d 32 RES-CIDR; n = 503); cows initiating RES 39 ± 3 d after AI (d 39 RES-CON; n = 494); and same as d 39 RES-CON plus a CIDR (d 39 RES-CIDR; n = 491). Cows were inseminated if observed in estrus before TAI. The P/AI was determined 32 and 60 d after TAI. In a subgroup of cows (n = 1,152), blood samples were collected and ovarian structures examined by ultrasonography on the days of the first GnRH (G1) and PGF of Ovsynch-56. Percentage of cows with a corpus luteum (CL) at G1 was unaffected by timing of treatments, but percentage of cows with a CL at PGF was greater for d 32 than for d 39 cows (87.9 vs. 79.4%). In addition, percentage of cows with P4 ≥1 ng/mL at G1 was unaffected by timing of treatments, but was increased for d 32 compared with d 39 RES cows on the day of the PGF of the RES protocols (86.5 vs. 74.3%). Treatment did not affect ovulation to G1 or P/AI 32 d after RES TAI (d 32 RES-CON = 30.1%, d 32 RES-CIDR = 28.8%, d 39 RES-CON = 27.5%, d 39 RES-CIDR = 30.5%). A greater percentage of d 39 RES cows underwent premature luteolysis during the RES protocol compared with d 32 RES cows. An interaction was detected between day of RES initiation and CIDR treatment, in which the CIDR increased P/AI 60 d after TAI for d 39 (CON = 23.7% vs. CIDR = 28.0%), but not for d 32 (CON = 26.9% and CIDR = 24.2%) cows. Pregnancy loss was unaffected by treatment. In addition, cows had improved P/AI 60 d after TAI when they received a CIDR and did not have a CL (CON-CL = 28.2%, CON-No CL = 19.2%, CIDR-CL = 27.0%, and CIDR-No CL = 26.5%) or had P4 <1 ng/mL (CON-High P4 = 27.8%, CON-Low P4 = 15.0%, CIDR-High P4 = 25.0%, and CIDR-Low P4 = 29.4%) at G1, but not if a CL was present or P4 was ≥1 ng/mL at G1. In conclusion, addition of a CIDR insert to supplement P4 during the RES protocol increased P/AI for cows initiating RES 39 ± 3 d after AI but not 32 ± 3 d after AI.  相似文献   

20.
Presynchronization strategies, such as Presynch-Ovsynch and Double-Ovsynch, increase fertility to timed artificial insemination (TAI) compared with Ovsynch alone; however, simpler presynchronization strategies could reduce costs and simplify reproductive management. Lactating Holstein cows (n = 601) were randomly assigned to 1 of 2 presynchronization treatments before beginning an Ovsynch-56 protocol (GnRH at 70 ± 3 DIM, PGF 7 d later, GnRH 56 h after PGF, and TAI 16 h later at 80 ± 3 DIM) for first TAI. Cows (n = 306) in the first treatment (Double-Ovsynch; DO) were presynchronized using a modified Ovsynch protocol (GnRH at 53 ± 3 DIM, 7 d later PGF, and GnRH 3 d later) ending 7 d before the first GnRH injection (G1) of an Ovsynch-56 protocol. Cows (n = 295) in the second treatment (GGPG) were presynchronized using a single injection of GnRH 7 d before G1 of an Ovsynch-56 protocol at 63 ± 3 DIM. Blood samples were collected at G1 and the PGF injections of the Ovsynch-56 protocol to determine progesterone (P4) concentrations. Pregnancy diagnosis was performed using ultrasonography 32 d after TAI, and pregnant cows were reexamined 46 and 70 d after TAI. Overall, DO cows had more pregnancies per artificial insemination (P/AI) compared with GGPG cows 32 d after TAI (53 vs. 43%). Overall, P/AI did not differ by parity (primiparous vs. multiparous), and pregnancy loss did not differ between treatments or parities. More DO cows had P4 in a medium range (>0.5 to <4 ng/mL) at G1 of the Ovsynch-56 protocol compared with GGPG cows (82 vs. 50%), and more DO cows had high P4 (>4 ng/mL) at the PGF injection of the Ovsynch-56 protocol compared with GGPG cows (67 vs. 36%). Thus, presynchronization with a modified Ovsynch protocol increased P/AI after TAI at first AI by increasing synchrony to the Ovsynch-56 protocol compared with presynchronization using a single injection of GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号