首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The volatile aromatic components in cow’s or sheep’s milk Kashk samples collected from 11 regions of Iran were extracted by solid-phase micro-extraction and analyzed by GC/MS. Alkenes, aldehydes, free fatty acids, esters, terpenes, alcohols, sulfur compounds, and ketones were the most frequently used compounds in samples. Same volatile compounds were identified in sheep’s and cows’ milk Kashk, whereas the numbers of compounds were different. The results from principle component analysis (PCA), performed to distinguish flavor from different regions, showed that Kashk samples are divided into three groups, in which flavor of some regions in two groups is affected by ingredients.  相似文献   

4.
Although the effects of cow diet on cheese sensory properties have been well documented, the putative interactions between the biochemical and microbial milk components and their respective roles in the development of the sensory properties of cheeses have yet to be explored in depth. The aim of this study was to evaluate the specific contribution of milk fat composition to the formation of cheese sensory properties. Two creams with different fat compositions were obtained from cows fed either pasture or maize silage. Cheeses were manufactured from the same skim milk (identical chemical and microbial composition) with either the pasture- or maize silage-origin pasteurized cream added. The gross composition and microbial composition of milks did not vary with cream origin. In milks and cheeses, the fatty acid (FA) profiles were modified by the origin of the cream. The concentrations of C18:0 and unsaturated FA such as cis-9 C18:1, trans-11 C18:1, C18:3n-3, total conjugated linoleic acids, and mono- and polyunsaturated FA were higher in milks and cheeses with the pasture-origin cream than in those with the maize-origin cream. In contrast, the maize milks and cheeses had higher concentrations of short- and medium-chain saturated FA, C16:0, and C18:2n-6. The level of lipolysis was 11% in the cheese rind and only 0.30% in the cheese core. The rind of pasture cheeses had a higher concentration of free C18:0 and C18:3n-3 and a lower concentration of free C14:0 and free C16:0 than the rind of maize cheeses. The levels of major microbial groups were similar in pasture and maize cheeses at different stages of ripening. The pasture cheeses had a more elastic and creamier texture, a yellower color, and a thinner rind than the maize cheeses, but the odor and aroma of cheeses were not affected by the origin of the cream, despite a few modifications in the balance of volatile compounds from FA catabolism. Based on these results, we conclude that milk fat composition modulated by cow diet had a direct role in the texture of the cheese but no effect on flavor. The high degree of lipolysis in cheese rind, along with the higher concentration of long-chain unsaturated free FA in pasture cheeses may be responsible for antimicrobial activity, which could explain differences in the appearance of cheese rind.  相似文献   

5.
Nutrient composition and organoleptic properties of milk can be influenced by cow diets. The objective of this study was to evaluate the forage type effects on volatile organic compounds, fatty acid (FA) profile, and organoleptic properties of milk. Timothy grass was fed as hay, pasture, or silage during a period of 27 d to a group of 21 cows in a complete block design based on days in milk. Each cow also received 7.2 kg/d of a concentrate mix to meet their nutrient requirements. Forage dry matter intake averaged 13.9 kg/d and was not different among treatments. Milk yield was higher for cows fed pasture, intermediate for cows fed silage, and lowest for cows fed hay. However, milk fat content was higher for cows fed hay and silage, compared with cows fed pasture. As a result, fat-corrected milk and fat yield were not different among treatments. Increasing the supply of dietary cis-9,cis-12 18:2 (linoleic acid) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid) when feeding pasture enhanced the concentration of these 2 essential FA in milk fat compared with feeding hay or silage. Moreover, the ratio of 16:0 (palmitic acid) to cis-9 18:1 (oleic acid), which is closely related to the melting properties of milk fat, was lower in milk from cows on pasture than in milk from cows fed hay or silage. Cows fed hay produced milk with higher levels of several free FA and γ-lactones, but less pentanal and 1-pentanol. More dimethyl sulfone and toluene were found in milk of cows on pasture. Cows fed silage produced milk with higher levels of acetone, 2-butanone, and α-pinene. Results from a sensory evaluation showed that panelists could not detect a difference in flavor between milk from cows fed hay compared with silage. However, a significant number of assessors perceived a difference between milk from cows fed hay compared with milk from cows fed pasture. In a sensory ranking test, the percentage of assessors ranking for the intensity of total (raw milk, fresh milk, and farm milk), sweet (empyreumatic, vanilla, caramel, and sugar), and grassy (grass, leafy vegetable, and plant) flavors was higher for milk from cows fed pasture compared with hay and silage. Using timothy hay, pasture, or silage harvested at a similar stage of development, the current study shows that the taste of milk is affected by the forage type fed to cows. More research is, however, needed to establish a link between the sensory attributes of milk and the observed changes in volatile organic compounds and FA profile.  相似文献   

6.
Raw milk from 13 cows fed TMR supplemented with native pasture and from 13 cows fed only TMR on one farm was collected separately 4 times with an interval of 15 d between collections. Two blocks (14 kg each) of cheese were made from each milk. The objective was to determine the influence of consumption of native plants in Sicilian pastures on the aroma compounds present in Ragusano cheese. Milk from cows that consumed native pasture plants produced cheeses with more odor-active compounds. In 4-mo-old cheese made from milk of pasture-fed cows, 27 odor-active compounds were identified, whereas only 13 were detected in cheese made from milk of total mixed ration-fed cows. The pasture cheeses were much more rich in odor-active aldehyde, ester, and terpenoid compounds than cheeses from cows fed only total mixed ration. A total of 8 unique aroma-active compounds (i.e., not reported in other cheeses evaluated by gas chromatography olfactory) were detected in Ragusano cheese made from milk from cows consuming native Sicilian pasture plants. These compounds were 2 aldehydes ([E,E]-2,4-octadienal and dodecanal), 2 esters (geranyl acetate and [E]-methyl jasmonate), 1 sulfur compound (methionol), and 3 terpenoid compounds (1-carvone, L(-) carvone, and citronellol). Geranyl acetate and (E)-methyl jasmonate were particularly interesting because these compounds are released from fresh plants as they are being damaged and are part of a possible plant defense mechanism against damage from insects. Most of the odor-active compounds that were unique in Ragusano cheese from pasture-fed cows appeared to be compounds created by oxidation processes in the plants that may have occurred during foraging and ingestion by the cow. Some odor-active compounds were consistently present in pasture cheeses that were not detected in the total mixed ration cheeses or in the 14 species of pasture plants analyzed. Either these compounds were present in other plants not analyzed, created in the rumen or in cheese after the pasture-plant material had been consumed, or the compounds were lost in the method of sample extraction used for the plant analysis (i.e., steam distillation) versus the solid-phase microextraction method used for the cheeses. This research has demonstrated clearly that some unique odor-active compounds found in pasture plants can be transferred to the cheese.  相似文献   

7.
The volatile composition and sensory properties of industrially produced Idiazabal cheeses made from ewes’ raw milk (RM) or pasteurised milk (PM) and with addition of different starter cultures were compared. Cheeses were analysed at 90 and 180 d of ripening. Acids were the major volatile compounds in RM cheeses. Methyl ketones were the major volatile compounds in PM cheeses at 90 ripening days. However, the content of acids strongly increased with ripening whereas the content of ketones decreased in PM cheeses. The concentration of esters was higher in RM cheeses than in PM cheeses. No differences were found in the content of alcohols. Most aldehydes, hydrocarbons, terpenes and furans identified were minor volatile compounds in both RM and PM cheeses. In RM cheeses, characteristic sensory attributes for the aroma of Idiazabal cheese were present at 3 months, whereas in PM cheeses those desirable sensory attributes did not appear until 6 months of ripening.  相似文献   

8.
Two experiments were conducted to study the consumer acceptability attributes of conjugated linoleic acid (CLA)-enriched milk and cheese from cows grazing on pasture. In experiment 1, 15 cows were fed either a diet containing 51% alfalfa hay plus corn silage and 49% concentrate [total mixed ration (TMR)], were grazed on pasture, or were grazed on pasture and received 3.2 kg/d of a grain mix. The grain mix contained 75% full-fat extruded soybeans (FFES), 10% corn, 10% beet pulp, and 5% molasses. During the final 3 wk of the 6-wk experiment, milk was evaluated for sensory attributes. In experiment 2, 18 cows were fed similar diets as in experiment 1, except replacing the group of cows grazed on pasture and receiving the grain mix was a group of cows grazed on pasture and receiving 2.5 kg/d per cow of the FFES; Cheddar cheese was manufactured from milk. Average CLA contents (g/100 g of fatty acid methyl esters) were 0.52, 1.63, and 1.69 in milk and 0.47, 1.47, and 1.46 in cheese from cows fed a TMR, grazed on pasture, and grazed on pasture and fed the grain mix, respectively. An open and trained panel evaluated CLA-enriched milk for mouth-feel, color, flavor, and quality and evaluated cheese for color, flavor, texture, and quality. Open and trained panel evaluations of milk and cheese showed no differences among treatments for any of the attributes, except that the trained panel detected a more barny flavor in milk from cows grazing pasture compared with milk from cows fed the TMR only. Results suggest that consumer acceptability attributes of CLA-enriched milk and cheese from cows grazing pasture is similar to those of milk and cheese with low levels of CLA.  相似文献   

9.
Three diets for cows were used to evaluate the effect of extruded linseed (EL) or extruded linseed plus α-tocopherol (ELVE) supplementation of a maize silage diet (CO) on the odor-active compounds of Saint-Nectaire cheese. Cheese odor and flavor profiles were studied by sensory analysis. The volatile compounds were extracted by purge and trap and separated by gas chromatography. The odor compounds were detected and identified using an 8-way olfactometric device and a mass spectrometer. Twenty-nine volatile compounds were considered as contributing to the odor of Saint-Nectaire cheese. Half the compounds identified were known to be lipid degradation products but not all of them were affected by the diet. Among the markers of unsaturated fatty acid degradation, hexanal was not affected, whereas heptanal was increased more by the ELVE diet (6 times) than by the EL (3 times) diet. The ELVE diet led to cheeses with butanoic acid and heptanal odor peaks that were, respectively, 2 and 6 times higher than with the CO diet, which explained the lower milk odor and flavor scores obtained by sensory analysis on ELVE cheese. Although the cheese-making date had a greater effect than the diet on the aromatic profiles of the cheese, principal component analysis showed that the differences between cheeses obtained on the 3 diets were repeatable. The EL diet successfully enhanced cheese nutritional value without noticeably changing its flavor. α-Tocopherol supplementation was found to be unnecessary, as no oxidized odor was found.  相似文献   

10.
Goat milk Jack cheeses were manufactured with different levels of proteolytic endo- and exopeptidases from lysed bacterial cultures and aged for 30 wk. The aroma compounds that are potentially important in contributing the typical flavor of goat milk Jack cheese were quantified using static headspace gas chromatography. The concentrations of volatile compounds were evaluated every 6 wk throughout the aging period. Odor activity values of volatile compounds were calculated using the sensory threshold values reported in literature and their concentrations in Jack cheeses. Odor activity values of identified compounds were used to assess their potential contribution to the aroma of goat milk Jack cheeses. The odor activity values indicated that the ketones 2-hexanone, 2-heptanone, 2-nonanone, and 2,3-butanedione (diacetyl) were important odor-active compounds. The major odor-active acids found in this semi-hard goat milk cheese were butanoic, 2-methyl butanoic, pentanoic, hexanoic, and octanoic acids. Among the aldehydes, propanal and pentanal had high odor activity values and likely contributed to the aroma of this cheese. The concentrations of butanoic, pentanoic, hexanoic, heptanoic, octanoic, and nonanoic acids increased significantly in goat milk Jack cheese throughout aging. The extracted enzymes from lysed bacterial cultures that were added to the cheeses during manufacturing caused considerable increases in the concentrations of butanoic and hexanoic acids compared with the control. However, the lower concentration of peptidases resulted in an increased concentration of butanal, whereas more peptidases resulted in a lower concentration of 2-nonanone in goat milk Jack cheeses.  相似文献   

11.
The aim of this experiment was to study the effect of the addition, to milk, of an essential oil (EO) obtained from the hydrodistillation of plants collected from a mountain natural pasture on the milk and cheese sensory properties. The EO was mainly composed of terpenoid compounds (67 of the 95 compounds identified) as well as ketones, aldehydes, alcohols, esters, alkanes, and benzenic compounds. In milk, the addition of this EO at the concentration of 0.1 μL/L did not influence its sensory properties, whereas at 1.0 μL/L, sensory properties were modified. In cheeses, the effect of adding EO into milk was studied in an experimental dairy plant allowing the production of small Cantal-type cheeses (10 kg) in 3 vats processed in parallel. The control (C) vat contained 110 L of raw milk; in the other 2 vats, 0.1 μL/L (EO1) or 3.0 μL/L (EO30) of EO were added to 110 L of the same milk. Six replicates were performed. After 5 mo of ripening, chemical and sensory analyses were carried out on the cheeses, including determination of the volatile compounds by dynamic headspace combined with gas chromatography-mass spectrometry. The EO did not influence the sensory properties of the cheeses at the lower concentration (EO1). However, the EO30 cheeses had a more intense odor and aroma, both characterized as “mint/chlorophyll” and “thyme/oregano.” These unusual odors and aromas originated directly from the EO added. In total, 152 compounds desorbing from cheese were found, of which 41 had been added with the EO; in contrast, 54 compounds of the EO were not recovered in the cheese. Few volatile compounds desorbing from cheeses, other than the added compounds, were affected by EO addition. Among them, 2-butanol, propanol, and 3-heptanone suggested a slight effect of the EO on lipid catabolism. The antimicrobial activity of terpenes is not or is only marginally involved in the explanation of the influence of the botanical composition of the meadows on the pressed cheeses sensory properties.  相似文献   

12.
The objective of this work was to compare milk fatty acid (FA) profile and texture and appearance of Cantal cheeses obtained from cows grazing 2 different upland grasslands: a highly diversified pasture (74 species) of area 12.5 ha managed under continuous mode (C), and a weakly diversified pasture (31 species) of area 7.7 ha (an old temporary grassland) managed under rotational mode (R). A control group of cows fed a hay-based diet (indoors, I) was used. Three equivalent groups of 12 Montbéliarde cows underwent the 3 treatments from May to September 2008. The cheeses were manufactured during 3 consecutive days in early June, early July, and late August (27 cheeses in all). The texture, appearance, and chemical composition of the cheeses were determined after 12 wk of ripening. Concentrations of total saturated FA and monounsaturated FA were higher and lower, respectively, in I milks compared with pasture milks. The concentrations of trans-11-C18:1 and cis-9-C18:1, and polyunsaturated FA as well as yellowness decreased during the season in C-derived milk but remained constant in R-derived milk, through a combined effect of grass development stage and the cows’ grazing selection. The I cheeses were, on average, firmer, less creamy, less elastic, and less yellow than the pasture cheeses. Decreasing and increasing trends in texture firmness during the season were observed for C and R cheeses, respectively. The rind of the pasture-fed cow cheese had fewer, less intensely colored, and less prominent spots than did that of I cheeses. This difference was probably due to greater migration of fat to the rind during pressing because of the lower fat melting point of the pasture-fed cow cheeses, which had higher unsaturated FA content. The greater amounts of fat deposited on the rind of the pasture-fed cow cheeses may have partially inhibited the microbial activity responsible for rind appearance. Our trial underlines the importance of the effects of grazing management associated with vegetation type on milk and cheese characteristics.  相似文献   

13.
本实验以乙醚为萃取溶剂,采用同时蒸馏萃取法(SDE)提取牦牛奶粉中挥发性组分,结合气相色谱-质谱联用技术(GC-MS)和气相色谱-嗅闻-质谱(GC-O-MS),对牦牛奶粉中风味物质定性定量分析。通过8名感官评价人员对牦牛奶粉进行感官评价,奶粉样品色泽良好,其中奶香味、奶油味和甜味比较浓郁,有微弱咸味和煮熟味,无苦味、酸味及涩味。GC-MS和GC-O-MS共同检测出21种挥发性物质,包括酮类8种,醛类3种,烯烃类3种,醇类2种,杂环类2种,酚类2种,醚类1种。其中醇和酮类物质含量较高,分别为46.85μg/m L和38.63μg/m L。实验表明,GC-MS、GC-O-MS结合感官评价分析牦牛奶粉中的风味组分的方法是较为准确和高效的。   相似文献   

14.
The effect of season of the year associated with changes in feeding and management system (pasture-based vs. confinement) on milk and cheese fatty acid profile and on sensory properties of Caciocavallo cheese was evaluated on 3 mountain dairy farms. Each farm used a pasture-based feeding system from April to June and from September to October (PS), and a confinement system for the rest of the year (CS). As a consequence of grazing, PS milk showed higher percentages of C18:3, cis-9,trans-11 conjugated linoleic acid, and trans-11 C18:1, and a reduced percentage of C16:0. The fatty acid profile of cheese largely reflected that of the corresponding raw milk from which cheese was made. This led to a significant decrease of atherogenic index in cheeses produced from cows on pasture. Based on sensory analysis, cheese from animals kept on pasture was more yellow and had a lower intensity of butter and smoked odors than did CS cheese. In addition, grazing induced a lower intensity of bitter and a higher intensity of spicy flavors compared with cheese from CS animals. In regard to texture, pasture feeding resulted in higher intensity of friability and graininess. All cheeses performed well in consumer tests; the panel found all samples more than acceptable for overall liking, and for liking according to appearance, taste/flavor, and texture. Overall liking of Caciocavallo cheese, as assessed by slope analysis, was affected primarily by taste/flavor (raw slope k = 0.88) and texture (k = 0.97), whereas appearance had a lesser effect (k = 0.72). The acidic and sensory profiles of cheese were well discriminated, with healthier cheeses produced by grazing cows. Therefore, wider use of pasture should be promoted to accentuate this favorable feature. Based on the specific nutritional and sensory characteristics of mountain Caciocavallo cheese, particularly that obtained from grazing animals, efforts should be made to indicate the quality of this cheese to the consumer and improve product recognition.  相似文献   

15.
La Serena cheeses made from raw Merino ewe's milk were high-pressure (HP) treated at 300 or 400 MPa for 10 min on d 2 or 50 after manufacture. Ripening of HP-treated and control cheeses proceeded until d 60 at 8°C. Volatile compounds were determined throughout ripening, and analysis of related sensory characteristics was carried out on ripe cheeses. High-pressure treatments on d 2 enhanced the formation of branched-chain aldehydes and of 2-alcohols except 2-butanol, but retarded that of n-aldehydes, 2-methyl ketones, dihydroxy-ketones, n-alcohols, unsaturated alcohols, ethyl esters, propyl esters, and branched-chain esters. Differences between HP-treated and control cheeses in the levels of some volatile compounds tended to disappear during ripening. The odor of ripe cheeses was scarcely affected by HP treatments on d 2, but aroma quality and intensity scores were lowered in comparison with control cheese of the same age. On the other hand, HP treatments on d 50 did not influence either the volatile compound profile or the sensory characteristics of 60-d-old cheese.  相似文献   

16.
The role of each step of cheese and ricotta making in development of flavor of cheese and other dairy products is not yet well known. The objectives of this study were to characterize volatile organic compounds (VOC) in cheese and ricotta making with bulk milk from cows grazing in a highland area and to evaluate their evolution in the various dairy products and by-products obtained during the production processes. A group of 148 cows was grazed day and night on pasture from June to September. A total of 7 cheese-making sessions were carried out using the bulk milk collected every 2 wk during summer pasturing according to the artisanal procedure used for Malga cheese production. All milks, products, and by-products were sampled, and the VOC content of milk, cream, whey, ricotta, scotta (residual liquid), fresh cheeses, and cheeses ripened for 6 and 12 mo was determined by solid-phase microextraction gas chromatography–mass spectrometry. Forty-nine compounds were identified belonging to the following chemical families: alcohols (13), aldehydes (9), esters (8), free fatty acids (6), ketones (5), lactones (2), sulfurs (2), terpenes (2), phenol (1), and benzene (1). The results showed that the amounts of VOC in the various dairy products differed significantly. Comparisons between the VOC of 4 types of milk (whole evening, skim evening, whole morning, mixed in the vat) showed that the skimming process had the greatest effect, with about half of all the VOC analyzed affected, followed by time of milking (evening milking vs. morning milking) and mixing (skim evening milk mixed with whole morning milk). In general, among fresh products, cream had higher contents of fatty acids, sulfurs, and terpene volatile compounds than fresh cheese and ricotta, whereas ricotta showed a very high VOC amount compared with fresh cheese, probably due to its high processing temperature. The effects of the progressive nutrient depletion in milk during processing were investigated by comparing the amounts of VOC in vat milk, whey, and scotta. Although milk contained greater amounts of nutrients, whey and especially scotta had higher concentrations of VOC, with the exception of esters, sulfurs, terpenes, and phenolic compounds, as a result of physicochemical and microbial modifications during processing. Finally, the effect of ripening was tested by comparing the VOC of fresh and ripened cheeses (6 and 12 mo), revealing that VOC release increased dramatically during the first semester and further with increasing the ripening period to 1 yr. In particular, some alcohols (butan-2-ol), aldehydes (2-methylpropanal, hexanal, and heptanal), esters (ethyl butanoate and ethyl hexanoate), fatty acids (acetic, butanoic, and hexanoic acids), and ketones (butan-2-one, pentan-2-one, and heptan-2-one) showed a very large increase. In conclusion, according to the artisanal milk processing carried out for Malga cheese production, the quantity of VOC was shown to increase about 3 times during cheese making (from milk in vat to fresh cheese plus whey), almost 4 times during ricotta making (from whey to ricotta plus scotta), and about 16 times during 1 yr of ripening of cheese.  相似文献   

17.
采用固相微萃取-气相色谱-质谱联用技术检测分析Streptococcus thermophilus与Lactobacillus delbrueckii subsp.bulgaricus单菌及复配发酵牛乳中的挥发性风味物质,结合相对气味活度值(relative odor activity value,ROAV)探讨发酵牛乳中关键性风味物质。结果表明:本实验共鉴定出100种挥发性风味物质,包括酸类、酮类、醛类、醇类、酯类、烷烃类和芳香族类化合物等。主成分分析表明,表征S.thermophilus单菌发酵乳的关键性风味物质是双乙酰、正壬醛和甲苯;表征L.bulgaricus单菌发酵乳的关键性风味物质是正庚醛、丁酸-2-甲基丙酯和1-庚醇;表征S.thermophilus与L.bulgaricus复配发酵乳的关键性风味物质是乙醛、3-甲基正丁醛、乙偶姻、2-壬酮、2-庚酮、醋酸乙烯酯、碳酸庚基苯基酯、甲酸乙烯酯和2-壬醇。相较于单菌发酵,复配发酵的风味物质组成、各组分相对含量及关键性风味物质均发生改变。  相似文献   

18.
A study was undertaken to compare the chemical and sensory characteristics of Abondance cheeses made with milk from animals grazing areas within the same highland pasture, but with different predominant plants. Nine cheeses made during the last 3 d of three successive 7 d periods were evaluated. The animals grazed on the southern side of the highland pasture during the first period (15-21 June), on the northern side during the second period (22-29 June) and returned to the southern side for the third period (30 June-6 July). The gross composition of the cheeses did not vary between periods. 'North' cheeses contained more plasmin, gamma-casein, alpha s1-I-casein and water-soluble N than 'south' cheeses. Both sensory and instrumental measurements indicated that north cheeses were less firm, stickier and more easily fractured than south cheeses. North cheeses were also more salty, bitter and persistent. Their overall aroma was more intense and they had more intense sour, burnt, toasted, fermented vegetable and sweat aromas, but less intense toffee, exotic fruit and acid milk aromas. The texture differences noted between the cheeses from milk produced on the two areas may come from differences in primary proteolysis, partly due to different amounts of plasmin and plasminogen in milk and in cheeses. The aroma differences were related to differences in volatile compounds. Some compounds had a microbial origin, while some others may have come from the pasture.  相似文献   

19.
为深入分析不同乳酸乳球菌在发酵乳中的风味贡献和特征香气成分,对多种商业乳酸菌发酵剂中分离得到21株乳酸乳球菌,进行单菌株发酵。根据感官评价结果进行香型分析,之后采用气相色谱-离子迁移谱仪(gas chromatograph-ion mobility spectrometry,GC-IMS)技术测定了发酵乳的挥发性风味化合物,并利用化学计量学分析方法进行风味物质的分析。结果表明:这些单菌株发酵乳可划分为奶香味、奶油味、酪香味三个香型。GC-IMS共鉴定出25种化合物,其中醇类9种、酮类8种、醛类3种、羧酸1种、酯4种。通过绘制GC-IMS指纹图谱,明确了不同菌株发酵乳的特征化合物组成。利用主成分分析(principal component analysis,PCA),将其中4株乳酸乳球菌双乙酰变种的发酵乳进行了很好的区分,且与感官评价结果相一致。采用偏最小二乘回归分析(partial least squares regression,PLSR)对感官香味分型和挥发性成分的相关性进行分析,得到对酪香味影响比较大的挥发性风味成分有正己醛、正己醇;对奶油味贡献较大的成分有乙酸乙酯;对奶香味贡献大的成分较为分散,关键性成分有待于进一步确定。本研究为发挥乳酸乳球菌改善发酵乳风味的作用提供了借鉴和参考。  相似文献   

20.
Probiotics intended to improve plant health and productivity of pastures grazed by dairy cow are becoming commercially available in Australia. Great Land (GL; Terragen Biotech Pty Ltd., Coolum Beach, QLD, Australia) is one such biologic soil conditioner and spray-on probiotic with a label claim of “acting to improve plant health and productivity.” The objective of this study was to quantify the effect of GL on the milk quality of cows grazing pasture top-dressed with GL. Lactating dairy cows of mixed age and breed (primarily Holstein-Friesian), in their second lactation or greater, and at least 80 d in milk were enrolled and randomly allocated into 1 of 2 study groups: a treatment cow group (n = 98; cows grazed pasture that was top-dressed with GL according to the product label) and a control cow group (n = 114; cows grazed untreated pasture). As required, both groups were supplemented at the same rate with a mixed ration during the grazing period. Composite milk samples were collected weekly from each cow during the study and analyzed to determine milk components. Milk volumes were recorded at each milking using the herd management software of the study farm. Mean differences in the milk component variables were compared using mixed-effects linear regression models. After controlling for the effect of days in milk, cow lactation, and time since a cow entered the study, the treatment cows produced an average of 1.21 L/cow per day more milk (95% confidence interval: 0.34–2.08 L/cow per day) and more milk protein (0.03 kg/d; 95% confidence interval: 0.01–0.05 kg/d) than the control cows. Pasture cover and pasture consumption did not differ between the GL-treated and the untreated study paddocks grazed by the treatment or control cows. A limited amount of published data have examined the effect of probiotic pasture treatment on the milk quality of dairy cows. This study suggests that application of such products may be beneficial. The mechanisms associated with this type of outcome remain to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号