首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Reduced conception rate during the hot summer and subsequent autumn is a well-documented phenomenon. Evaporative cooling systems greatly increase milk production but only slightly improve reproductive performance; hence, additional approaches to improving fertility during the hot season are required. The purpose of the present study was to examine whether the combination of an efficient cooling system and hormonal manipulation (GnRH + PGF) might improve fertility during the summer and autumn. The experiment was conducted from July to December in 2 commercial herds in Israel and included 382 healthy Holstein cows. Cows (50 to 60 d in milk) were hormonally treated to induce 3 consecutive 9-d follicular waves, with GnRH administration followed by PGF injection 7 d later. Both control (n = 187) and treated (n = 195) cows were inseminated following estrus, and pregnancy was determined by palpation 45 d post-insemination. Data revealed an interaction between treatment and primiparous cows, reflected by a 16% increase in conception rate [odds ratio (OR) 2.32, 95% confidence interval (CI): 0.96-5.61] and 14% increase in pregnancy rate at 120 d in milk (OR 3.16, 95% CI: 0.93-10.47). Interaction between treatment and high body condition score was reflected by a 14% increase in pregnancy rate at 90 d in milk (OR 3.02, 95% CI: 1.14-7.96). About 60% of the treated cows expressed estrus at the expected time (normal response within 5 d following the third PGF injection); the remaining 40% that manifested estrus later (late response) had higher milk yield and lower body condition score. Additional analyses indicated that treatment interacted with normal response to raise conception rates and pregnancy rates of primiparous cows and cows with high body condition score. On the other hand, treatment by late-response interaction lowered conception rate during the summer. Implementation of such hormonal treatment in combination with an efficient cooling system may improve reproductive performance of dairy cows during the summer and subsequent autumn.  相似文献   

2.
The objective of this study was to evaluate the factors that may affect conception rates (CR) following artificial insemination (AI) or embryo transfer (ET) in lactating Holstein cows. Estrous cycling cows producing 33.1 ± 7.2 kg of milk/d received PGF2α injections and were assigned randomly to 1 of 2 groups (AI or ET). Cows detected in estrus (n = 387) between 48 and 96 h after the PGF2α injection received AI (n = 227) 12 h after detection of estrus or ET (n = 160) 6 to 8 d later (1 fresh embryo, grade 1 or 2, produced from nonlactating cows). Pregnancy was diagnosed at 28 and 42 d after estrus, and embryonic loss occurred when a cow was pregnant on d 28 but not pregnant on d 42. Ovulation, conception, and embryonic loss were analyzed by a logistic model to evaluate the effects of covariates [days in milk (DIM), milk yield, body temperature (BT) at d 7 and 14 post-AI, and serum concentration of progesterone (P4) at d 7 and 14 post-AI] on the probability of success. The first analysis included all cows that were detected in estrus. The CR of AI and ET were different on d 28 (AI, 32.6% vs. ET, 49.4%) and 42 (AI, 29.1% vs. ET, 38.8%) and were negatively influenced by high BT (d 7) and DIM. The second analysis included only cows with a corpus luteum on d 7. Ovulation rate was 84.8% and was only negatively affected by DIM. Conception rates of AI and ET were different on d 28 (AI, 37.9% vs. ET, 59.4%) and 42 (AI, 33.8% vs. ET, 46.6%) and were negatively influenced by high BT (d 7). The third analysis included only ovulating cows that were 7 d postestrus. Conception rates of AI and ET were different on d 28 (AI, 37.5% vs. ET, 63.2%) and 42 (AI, 31.7% vs. ET, 51.7%) and were negatively influenced by high BT (d 7). There was a positive effect of serum concentration of P4 and a negative effect of milk production on the probability of conception for the AI group but not for the ET group. The fourth analysis was embryonic loss (AI, 10.8% vs. ET, 21.5%). The transfer of fresh embryos is an important tool to increase the probability of conception of lactating Holstein cows because it can bypass the negative effects of milk production and low P4 on the early embryo. The superiority of ET vs. AI is more evident in high-producing cows. High BT measured on d 7 had a negative effect on CR and embryonic retention.  相似文献   

3.
Our objectives were to determine lactational and reproductive outcomes in response to increased milking frequency (MF), injection of estradiol cypionate (ECP), and treatment with bovine somatotropin (bST). Lactating dairy cows (n = 144) were blocked by lactation number (1 vs. 2+) and assigned randomly to a 2 × 2 × 2 factorial experiment consisting of 8 treatment combinations: 1) MF consisting of 4× daily milking (4×) for the first 30 d in milk (DIM) vs. 2× daily milking (2×), with all cows milked 2× after 30 DIM; 2) 10 mg of ECP given postpartum at 8 ± 3 DIM versus controls that received ECP diluent (oil); and 3) biweekly bovine somatotropin (bST), starting sometime after 60 DIM, versus no bST. Ovulation before the first artificial insemination was synchronized by using Heatsynch (GnRH injection 7 d before PGF2α followed in 24 h by ECP), and cows were artificially inseminated after detected estrus or at 48 h after ECP, whichever came first. Pregnancy was assessed by transrectal ultrasonography 28 to 30 d after artificial insemination. Daily yield and weekly components of milk were measured during the first 90 DIM. Intervals to first and second postpartum ovulation were unaffected by treatment, but cows were in estrus earlier after 2× (24 ± 4 d) than 4× (41 ± 4 d) daily MF, and sooner after ECP (25 ± 3 d) than after oil (39 ± 4 d) treatment. Pregnancy rates among 4× cows increased for ECP versus oil (52.8 vs. 27.8%) more than for cows with 2× MF treated with ECP versus oil (50.0 vs. 39.4%). Increased MF increased daily milk yields and energy-corrected milk yields during the first 30 DIM. Although milk yields were increased acutely by ECP during the 10 d after its injection, subsequent milk yields were decreased for ECP-treated cows previously milked 4× daily. Treatment with bST increased overall daily milk yields most in cows previously milked 2× daily and treated with oil and those milked 4× daily and treated with ECP. We concluded that early postpartum ECP injection increased pregnancy rates, but generally had detrimental effects on milk yields after 30 DIM for ECP-treated cows previously milked 4× daily, unless those cows also were treated with bST.  相似文献   

4.
Objectives were to evaluate the effects of inseminating cows observed in estrus following a PGF-based presynchronization protocol on reproductive and lactation performance. Weekly, Holstein cows (260 primiparous and 379 multiparous) were balanced by parity, body condition score at 3 d in milk (DIM), and previous lactation milk yield (multiparous cows) and assigned randomly to either of 2 reproductive programs. All cows received 2 injections of PGF at 35 and 49 DIM and a controlled internal drug release insert containing progesterone from 42 to 49 DIM. Cows assigned to the short voluntary waiting period (SVWP) treatment were inseminated if observed in estrus after the second injection of PGF of the presynchronization protocol, and those not inseminated were submitted to a timed artificial insemination (TAI) protocol (GnRH 62 DIM, PGF 69 DIM, GnRH 71 DIM, and TAI 72 DIM), whereas cows assigned to the long voluntary waiting period (LVWP) were all submitted to the TAI protocol and were TAI at 72 DIM. Plasma progesterone was determined at 35, 49, and 62 DIM for evaluation of interval from parturition to resumption of cyclicity. Pregnancy was diagnosed weekly at 32 and 60 d after first AI and at 42 d after subsequent inseminations. Percentage of SVWP cows inseminated in estrus was 58.9% and the interval from parturition to first AI was shorter for SVWP cows (64.7 ± 0.4 vs. 74.2 ± 0.5 DIM). Cows cyclic by 49 and 62 DIM were more likely to be inseminated in estrus than those anovular by 62 DIM (67.9, 61.0, and 32.8%, respectively) and cyclic cows by 49 and 62 DIM had shorter interval from parturition to first AI than anovular cows (62.6 ± 0.7, 63.1 ± 1.2, and 70.1 ± 1.1 DIM). Treatment did not affect pregnancy per AI after first postpartum AI or the rate at which cows became pregnant. Cows that resumed cyclicity by 49 DIM had greater pregnancy per AI than cows still anovular by 62 DIM and became pregnant at a faster rate than cows that resumed cyclicity by 62 DIM and those still anovular by 62 DIM. Inseminating cows that displayed estrus after the presynchronization protocol did not affect reproductive performance compared with submission of 100% of cows to a TAI protocol.  相似文献   

5.
Reduced fertility of dairy cows during periods of elevated temperature, humidity, or both might be associated with low plasma progesterone concentration. Alleviation of thermal stress by efficient cooling is a prerequisite for improving fertility by hormonal treatment. We examined whether insertion of a controlled intravaginal drug-releasing (CIDR) insert containing progesterone following artificial insemination (AI) would improve summer conception rate. Control (n = 195) and treated (CIDR; n=165) cows, yielding on average 42.3 kg milk/d, were inseminated following estrus detection during the summer (July to October) in 2 commercial dairy herds in Israel. Mean maximal air temperature and relative humidity during the study were 30.2°C and 86%, respectively. All experimental cows were efficiently cooled throughout the study, as confirmed by measuring the body temperature of random cows. Treated cows received a CIDR insert on d 5 ± 1 post-AI for 13 d and pregnancy was confirmed by palpation 45 d post-AI. Plasma progesterone concentration in treated cows was elevated by approximately 1.5 ng/mL. Multiple logistic regressions were used to analyze conception rate. Treatment did not alter the overall conception rate; however, probability of conception increased in CIDR-treated cows with low body condition score (BCS) compared with their control counterparts (53 vs. 27%, respectively). A pronounced increase in probability of conception was recorded in CIDR-treated cows exhibiting both low BCS and postpartum reproductive disorders, compared with their control counterparts (58 vs. 14%, respectively). Exogenous progesterone supplementation on d 5 post-AI for 13 d improves summer fertility of subpopulations of cows exhibiting low BCS and postpartum reproductive disorders. Reproductive management based on specific hormonal treatment of designated subgroups of cows known to derive beneficial effects from it might improve treatment efficiency and reduce expenses.  相似文献   

6.
《Journal of dairy science》2023,106(6):4429-4442
The objective of this observational study was to evaluate the association of transition cow health and estrous expression, detected by an automated activity monitoring system (Smarttag Neck, Nedap Livestock Management), with reproductive performance in lactating Holstein cows. A total of 3,750 lactating Holstein cows (1,563 primiparous cows and 2,187 multiparous cows) from a commercial dairy farm in Slovakia calving from January 2020 until July 2021 were enrolled on an ongoing basis. Activity data were recorded from d 7 until d 60 postpartum. Within this observational period, cows were classified into 3 categories: (1) no estrus event (Estrus0), (2) 1 estrus event (Estrus1), or (3) 2 or more estrus events (Estrus2+). Transition cow health was assessed by farm personnel within the first 30 d in milk (DIM) using standard operating procedures. Generalized linear mixed models were used to analyze continuous and categorical data. Cox proportional hazard models were used for time to event data. The overall prevalence of anestrus was 20.8%. Multiparous cows had a greater risk for anestrus compared with primiparous cows [odds ratio (OR) = 1.4]. Cows with stillbirth (OR = 1.76), retained placenta (OR = 2.19), puerperal metritis (OR = 1.48), or subclinical ketosis (OR = 1.51) had a greater risk for anestrus. In addition, cows calving in summer (OR = 0.82), autumn (OR = 0.38), or winter (OR = 0.56) had a higher incidence of anestrus than cows calving in spring. Estrous expression from d 7 until d 60 postpartum was associated with estrous duration (DU) and estrous intensity at first artificial insemination (AI). Cows in Estrus0 had the shortest DU at first postpartum AI (9.4 ± 0.18 h) compared with cows in Estrus1 (10.5 ± 0.13 h) and Estrus2+ (11.4 ± 0.12 h). Cows in Estrus2+ had a longer DU at first postpartum AI compared with cows in Estrus1. For Estrus0, Estrus1, and Estrus2+ cows, pregnancy per AI at first service was 42.5%, 50.9%, and 55.4%, respectively. Estrous expression from d 7 until d 60 postpartum was associated with time to first AI and time to pregnancy. Compared with Estrus0 cows, Estrus1 [hazard ratio (HR) = 1.43] and Estrus2+ cows (HR = 1.62) had an increased hazard of being inseminated within 100 DIM. Compared with Estrus2+, Estrus1 cows had a reduced hazard of being inseminated within 100 DIM (HR = 0.89). Compared with Estrus0 cows, Estrus1 (HR = 1.24) and Estrus2+ cows (HR = 1.46) had an increased hazard of becoming pregnant within 200 DIM. Median DIM to pregnancy were 121, 96, and 92 for Estrus0, Estrus1, and Estrus2+ cows, respectively. In conclusion, cows with transition cow disorders (i.e., stillbirth, retained placenta, puerperal metritis, or subclinical ketosis) had a greater chance for anestrus compared with healthy cows. Cows in Estrus0 had reduced estrous expression at first AI and inferior reproductive performance compared with cows that displayed estrous activity from d 7 until d 60.  相似文献   

7.
Our objective was to evaluate factors associated with spontaneous multiple ovulations in lactating dairy cows. Ovaries of cows [n = 267; >50 days in milk (DIM)] were evaluated weekly using ultrasound to determine spontaneous (i.e., no hormonal treatment) ovulation rate starting at 50 DIM and continuing until pregnancy diagnosis. Cows were fitted with a transmitter to record standing activity during estrus, and serum progesterone concentration was assessed weekly starting at wk 1 postpartum for all cows. Overall, 76 (28.5%) cows were anovular and 191 (71.5%) were ovular by 71 DIM. Incidence of anovulation was not associated with level of milk production but was associated with lower body condition. For anovular cows (n = 41) that spontaneously recovered, the multiple ovulation rate at first ovulation was 46.3%. For second and subsequent ovulations (n = 463), the level of milk production for 14 d preceding estrus was associated with increased ovulation rate. To illustrate, incidence of multiple ovulations was 1.6% (2/128), 16.9% (32/189), and 47.9% (70/146) for ovulations when cows were producing <35, 35 to <45, and ≥45 kg/d, respectively. Among cows for which estrous behavior was recorded, those with multiple ovulations (n = 48) had shorter duration of estrus (4.3 ± 0.7 vs. 9.9 ± 0.5 h) and higher production (47.2 ± 0.9 vs. 38.1 ± 0.5 kg/d) than cows with single ovulations (n = 237). Circulating concentrations of estradiol were lower (5.5 ± 0.3; n = 15 vs. 7.8 ± 0.4 pg/mL; n = 71) during periods of estrus with multiple ovulations despite a greater preovulatory follicular volume (4136 ± 123 vs. 3085 ± 110 mm3). Similarly, serum progesterone concentration 7 d after estrus was lower for cows with multiple than single ovulations (2.5 ± 0.3 vs. 3.2 ± 0.1 ng/mL) despite a greater luteal volume (8291 ± 516 vs. 6405 ± 158 mm3). In summary, the first spontaneous ovulation in anovular cows and a higher level of milk production for 14 d preceding estrus were associated with increased multiple ovulation rate. Additionally, cows with multiple ovulations had lower estradiol at estrus, a shorter duration of estrus, and lower progesterone at 7 d after estrus than cows with single ovulations.  相似文献   

8.
The objectives of this study were to evaluate the effect of administering 500 mg of recombinant bovine somatotropin (bST) every 10 d on ovulatory responses, estrous behavior, and fertility of lactating Holstein cows. Lactating dairy cows were assigned to 1 of 2 treatments: a control with no administration of bST (73 primiparous and 120 multiparous cows) or 6 consecutive administrations of 500 mg of bST (83 primiparous and 123 multiparous cows) given subcutaneously at 10-d intervals starting 61 ± 3 d postpartum (study d 0), concurrent with the initiation of the timed artificial insemination (AI). Blood samples were collected thrice weekly from 61 ± 3 to 124 ± 3 d in milk (DIM), and plasma samples were analyzed for concentrations of estradiol, glucose, insulin, insulin-like growth factor 1, and progesterone. The estrous cycle of cows was presynchronized with 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, and the Ovsynch timed AI protocol was initiated at 61 ± 3 DIM. Ovaries were scanned to determine ovulatory responses during the Ovsynch protocol. Pregnancy was diagnosed at 33 and 66 d after AI. Body condition was scored on study d 0, 10, 42, and 76. Sixty-four cows were fitted with a pressure mounting sensor with radiotelemetric transmitters to monitor estrous behavior. Treatment of lactating dairy cows with 500 mg of bST at 10-d intervals increased yields of milk and milk components in the first 2 mo after treatment. Body condition of bST-treated cows remained unaltered, whereas control cows gained BCS. Treatment with bST increased concentrations of insulin-like growth factor 1 chronically, but concentrations of insulin and glucose increased only transiently in the first 7 d after the first injection of bST. Concentrations of progesterone during and after the Ovsynch protocol remained unaltered after treatment with bST; likewise, ovulatory responses during the Ovsynch protocol were mostly unaltered by treatment. Concentration of estradiol tended to be greater for bST cows than for control cows immediately before induction of ovulation in the Ovsynch protocol. Similarly, the mean and the peak concentrations of estradiol were greater for bST cows than for control cows when monitored during spontaneous estrus. Nevertheless, duration of estrus and the median number of standing events were less for bST cows than for control cows. Pregnancies per AI after the first and second postpartum inseminations were not affected by bST treatment. Treatment of lactating dairy cows with 500 mg of bST every 10 d improved lactation performance, but it did not affect pregnancies per AI and it reduced expression of estrus.  相似文献   

9.
The aim of this study was to compare the reproductive performance of dairy cows subjected to early (ER) or late (LR) resynchronization programs after nonpregnancy diagnoses based on either pregnancy-associated glycoproteins (PAG) ELISA or transrectal palpation, respectively. In addition, the accuracy of the PAG ELISA for early pregnancy diagnosis was assessed. Lactating Holstein cows were subjected to a Presynch-Ovsynch protocol with timed artificial insemination (AI) performed between 61 and 74 DIM. On the day of the first postpartum AI, 1,093 cows were blocked by parity and assigned randomly to treatments; however, because of attrition, 452 ER and 520 LR cows were considered for the statistical analyses. After the first postpartum AI, cows were observed daily for signs of estrus and inseminated on the same day of detected estrus. Cows from ER that were not reinseminated in estrus received the first GnRH injection of the Ovsynch protocol for resynchronization 2 d before pregnancy diagnosis. On d 28 after the previous AI (d 27 to 34), pregnancy status was determined by PAG ELISA, and nonpregnant cows continued on the Ovsynch protocol for reinsemination. Pregnant cows had pregnancy status reconfirmed on d 46 after AI (d 35 to 52) by transrectal palpation, and those that lost the pregnancies were resynchronized. Cows assigned to LR had pregnancy diagnosed by transrectal palpation on d 46 after AI (d 35 to 52) and nonpregnant cows were resynchronized with the Ovsynch protocol. Blood was sampled on d 28 after AI (d 27 to 34) from cows in both treatments that had not been reinseminated on estrus and again on d 46 after AI (d 35 to 52) for assessment of PAG ELISA to determine the accuracy of the test. Cows were subjected to treatments for 72 d after the first insemination. Pregnancy per AI (P/AI) at first postpartum timed AI did not differ between treatments and averaged 28.9%. The proportion of nonpregnant cows that were resynchronized and received timed AI was greater for ER than for LR (30.0 vs. 7.6%). Cows in ER had a shorter interval between inseminations when inseminated following spontaneous estrus (21.7 ± 1.1 vs. 27.8 ± 0.8 d) or after timed AI (35.3 ± 1.2 vs. 55.2 ± 1.4 d). Nevertheless, the ER did not affect the rate of pregnancy (adjusted hazard ratio = 1.23; 95% confidence interval = 0.94 to 1.61) or the median days postpartum to pregnancy (ER = 132 vs. LR = 140). A total of 2,129 PAG ELISA were evaluated. Overall, sensitivity, specificity, and positive and negative predictive values averaged 95.1, 89.0, 90.1, and 94.5%, respectively, and the accuracy was 92.1%. In conclusion, PAG ELISA for early diagnosis of pregnancy had acceptable accuracy, but early resynchronization after nonpregnancy diagnosis with PAG ELISA did not improve the rate of pregnancy or reduce days open in dairy cows continuously observed for estrus.  相似文献   

10.
The effect of increasing the postpartum metabolizable protein (MP) supply on performance and mammary metabolism was studied using 8 Holstein cows in a complete randomized design. At parturition, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS). Arterial and epigastric venous blood samples were taken 14 d before expected parturition and at 4, 15, and 29 d in milk (DIM). To compensate previously estimated deficiency of essential AA and to avoid oversupply, casein protein infusion was graduated with 696 ± 1, 490 ± 9, and 212 ± 10 g/d at 4, 15 and 29 DIM, respectively. Dry matter intake was unaffected by CAS. Compared with CTRL, MP supply was greater at 4 DIM with CAS but did not differ by 29 DIM. Milk yield was greater with CAS (+7.2 ± 1.3 kg/d from 1 to 29 DIM). Milk protein yield was greater with CAS at 4 DIM and averaged 1,664 ± 39 g/d compared with 1,212 ± 86 g/d for CTRL, but did not differ at 29 DIM (1,383 ± 48 g/d). The ratio of MP total supply to requirement was numerically greater at 4 DIM for CAS compared with CTRL, indicating less postpartum protein deficiency. In contrast, a greater net energy deficiency tended to be induced with CAS, but the greater milk yield allowed a large part of mobilized fat to be secreted in milk. Arterial concentration of total essential AA increased sharply after parturition for CAS compared with slight decreases for CTRL. The patterns of arterial concentrations combined with arterial-mammary venous concentration differences indicated that Lys, Leu, and Tyr were the first-limiting AA at 4 DIM with CTRL. Mammary plasma flow was unaffected by treatment, indicating similar perfusion of mammary tissue. The greater milk yield with CAS was associated with greater mammary uptake of individual essential AA, tendencies to greater uptake of glucose, lactate, and β-hydroxybutyrate, whereas uptakes of volatile fatty acids were unaffected. Despite similar MP supply by 29 DIM, milk and lactose yields were greater with CAS indicating a persistent response to increased postpartum MP supply. In conclusion, the postpartum MP deficiency can have a substantial negative effect in dairy cows as the major outcome of increasing the postpartum MP supply was increased milk, milk protein, and lactose yield, as well as an enhanced MP balance. Potential positive effects for other body functions than milk synthesis are discussed. Future investigations are needed to delineate how to transfer the effect into practical feeding strategies.  相似文献   

11.
The objective of this study was to evaluate the effect of the Ovsynch protocol with and without exogenous progesterone on pregnancy rate (PR) in cows in which estrous cycles were previously synchronized with 2 doses of PGF2α and that were not detected in estrus during the presynchronization period. The study was conducted in Chihuahua, Mexico (8,650 Holstein milking cows; 305-d mature equivalent milk yield = 13,790 kg). On d 47 postpartum, estrous cycles in cows were synchronized by using 2 doses of PGF2α 14 d apart. Any cow detected in estrus during this presynchronization period was inseminated. Cows not detected in estrus were selected at random and assigned to receive progesterone supplementation or to serve as controls. Controls (n = 594) were subjected to the Ovsynch protocol and cows in the progesterone supplemented treatment (n = 594) were subjected to the Ovsynch protocol plus an intravaginal insert containing 1.9 g of progesterone inserted at the time of the first GnRH injection and removed 7 d later. Progesterone-supplemented cows had a greater PR (31.2%) compared with controls (22.7%). Plasma progesterone concentrations at artificial insemination (AI) were <1 ng/mL and did not differ between treatments. At 14 d post-AI, however, more cows that received progesterone supplementation had concentrations of progesterone >1 ng/mL compared with controls. It was concluded that after a presynchronization period, cows subjected to the Ovsynch program and supplemented with exogenous progesterone had a greater PR and greater concentrations of progesterone after AI than those subjected to the Ovsynch protocol and not supplemented with progesterone.  相似文献   

12.
Lactating dairy cows (n = 1,538) were enrolled in a randomized complete block design study to evaluate protocols to synchronize estrus and ovulation. Within each herd (n = 8), cows were divided into 3 calving groups: early, mid, and late, based on days in milk (DIM) at mating start date (MSD). Early calving cows (n = 1,244) were ≥42 DIM at MSD, mid-calving cows (n = 179) were 21 to 41 DIM at MSD, and late-calving cows (n = 115) were 0 to 20 DIM at MSD. Cows in the early, mid-, and late-calving groups were synchronized to facilitate estrus or timed AI (TAI) at MSD (planned breeding 1; PB1), 21 d (PB2), and 42 d (PB3) after MSD, respectively. For each PB, cows in the relevant calving group were stratified by parity and calving date and randomly assigned to 1 of 4 experimental groups: (1) d −10 GnRH (10 μg of i.m. buserelin) and controlled internal drug release insert (CIDR; 1.38 g of progesterone); d −3 PGF (25 mg of i.m. dinoprost); and d −2 CIDR out and AI at observed estrus (CIDR_OBS); (2) same as CIDR_OBS, but GnRH 36 h after CIDR out and TAI 18 h later (CIDR_TAI); (3) same as CIDR_TAI, but no CIDR (Ovsynch); or (4) untreated controls (CTRL). The CIDR_OBS, CIDR_TAI, and Ovsynch had shorter mean intervals from calving to first service compared with the CTRL (69.2, 63.4, and 63.7 vs. 73.7 d, respectively). Both CIDR_OBS (predicted probability; PP of pregnancy = 0.59) and CIDR_TAI (PP of pregnancy = 0.54) had increased odds of conceiving at first service compared with Ovsynch [PP of pregnancy = 0.45; odds ratio (OR) = 1.81 and OR = 1.46, respectively], and Ovsynch had decreased likelihood of conceiving at first service (OR = 0.70) compared with CTRL (PP of pregnancy = 0.53). Both CIDR_TAI hazard ratio; HR [95% confidence interval = 1.21 (1.04, 1.41)] and Ovsynch [HR (95% confidence interval) = 1.23 (1.05, 1.44)] were associated with an increased likelihood of earlier conception compared with the CTRL. A greater proportion of cows on the CIDR_TAI treatment successfully established pregnancy in the first 42 d of the breeding season compared with the CTRL (0.75 vs. 0.67 PP of 42-d pregnancy, respectively). Protocols to synchronize estrus and ovulation were effective at achieving earlier first service and conception in pasture-based seasonal calving dairy herds. However, animals that conceived following insemination at observed estrus had a decreased likelihood of embryo loss to first service compared with animals bred with TAI (PP of embryo loss after first service = 0.05 vs. 0.09; OR = 0.52).  相似文献   

13.
The objective of this observational study was to evaluate the association of estrous expression within 40 days in milk (DIM) using a neck-mounted automated activity monitor (Heatime Pro; SCR Engineers Ltd.) with reproductive performance in lactating Holstein cows. A total of 2,077 cows (614 primiparous cows and 1,463 multiparous cows) from 5 commercial dairy farms were included in the statistical analyses. Activity data from the first 7 d after calving were excluded. An estrus event was defined as an activity change index ≥35 for more than 2 h. Cows were classified according to the number of estrus events from d 7 until d 40 postpartum into 3 categories: (1) no estrus event (Estrus0); (2) one estrus event (Estrus1), and (3) 2 or more estrus events (Estrus2). Generalized linear mixed models were used to analyze continuous and categorical data. Shared frailty models were used for time to event data. Overall, 52.7% of cows had no estrus event detected by an automated activity monitor system from d 7 until d 40 postpartum. Herd level prevalence of Estrus0 ranged from 37.5 to 58.4%. Estrous expression from d 7 until d 40 postpartum affected estrous duration and estrous intensity at first artificial insemination (AI). Cows in Estrus0 had the shortest duration (13.2 ± 0.33 h) compared with cows in Estrus1 (13.8 ± 0.36 h) and Estrus2 (14.8 ± 0.41 h). Cows in Estrus2 had a longer estrous duration at first postpartum AI compared with cows in Estrus1. Among Estrus0 cows, 46.2% had an estrus event with high intensity at first postpartum AI. Among cows in Estrus1 and Estrus2, 50.8 and 53.8% had an estrus event with high intensity at first postpartum AI, respectively. There was a significant difference between Estrus2 and Estrus0 and a tendency between Estrus0 and Estrus1. There was no difference between Estrus1 and Estrus2. For Estrus0, Estrus1, and Estrus2 cows, pregnancy per AI was 29.4, 30.9, and 37.8%, respectively. There was a significant difference between Estrus0 and Estrus2 and Estrus1 and Estrus2. There was no difference between Estrus0 and Estrus1. Estrous expression from d 7 until d 40 postpartum affected time to first AI and time to pregnancy. Compared with Estrus0 cows, cows in Estrus1 [hazard risk (HR) = 1.74] and Estrus2 (HR = 1.77) had an increased hazard of being inseminated within 100 DIM. There was no difference between Estrus1 and Estrus2. Median DIM to first AI were 70, 59, and 58 for cows in Estrus0, Estrus1, and Estrus2, respectively. Compared with Estrus0 cows, cows in Estrus1 (HR = 1.28) and Estrus2 (HR = 1.33) had an increased hazard of becoming pregnant within 200 DIM. There was no difference between Estrus1 and Estrus2. Median DIM to pregnancy were 127, 112, and 103 for Estrus0 cows, Estrus1 and Estrus2, respectively. In conclusion, cows with no estrous expression from 7 to 40 DIM had reduced estrous expression at first AI and inferior reproductive performance compared with cows that displayed estrous activity.  相似文献   

14.
Subclinical endometritis (SCE) has a severe negative effect on reproductive performance of dairy cows. Different studies have shown a wide variety of cut points for the polymorphonuclear neutrophilic leukocyte (PMNL) percentage to define SCE and differing sampling times. Possible risk factors for SCE, such as low body condition score, hyperketonemia, and increased haptoglobin concentrations have been demonstrated. The aim of this study was to determine the relationship between bacterial findings in the uterus and PMNL in the early postpartum period and to compare 2 classification schemes for the diagnosis of SCE. Cytological and bacteriological samples from the uterus were taken from 149 cows at 2 consecutive times postpartum [10 ± 1 and 24 ± 1 d in milk (DIM)] and additionally, 131 cows were sampled at 21 to 27 DIM. For sample collection, the cytobrush technique was used and vaginal discharge was examined by vaginoscopy. Polymorphonuclear neutrophilic leukocyte cut points were set at 5, 10, and 18%. Cows positive with α-hemolytic streptococci at 10 ± 1 DIM had significant higher PMNL percentages at 21 to 27 DIM and greater median days to pregnancy (193.5 d) than cows not infected (123.0 d). Cows with Trueperella pyogenes at 10 ± 1 DIM had higher odds (5.2) of having more than 18% PMNL at 21 to 27 DIM compared with cows without infection. Escherichia coli had no effect on the prevalence of SCE regardless of the cut point. Primiparous cows with more than 18% PMNL had greater median days to pregnancy (144.5 d) than cows with less than 5% (80.0 d) or cows between 5 and 18% PMNL (68.0 d). Cows between 5 and 18% PMNL or 10 and 18% PMNL showed the best reproductive performance. The results demonstrate that an early infection with α-hemolytic streptococci increased the PMNL percentage 2 wk later and that 18% PMNL at 21 to 27 DIM was a predictive cut point for primiparous cows to diagnose animals with or without SCE.  相似文献   

15.
The objective of the current study was to evaluate the effect of GnRH early postpartum on induction of ovulation, uterine health, and fertility in dairy cows. Holstein cows without a corpus luteum (CL) at 17 ± 3 DIM were assigned randomly to receive i.m. GnRH (n = 245) at 17 ± 3 and 20 ± 3 DIM or remain as controls (n = 245). Ovaries were scanned by ultrasonography twice weekly totaling 4 examinations. Ovulation was characterized by the appearance of a CL ≥20 mm at any ultrasound or CL <20 mm in 2 consecutive examinations. Clinical and cytological endometritis were diagnosed at 35 DIM. Compared with control, GnRH increased ovulation up to 3.5 d after the last treatment (78.7 vs. 45.0%) and did not affect the prevalence of clinical endometritis (23.9 vs. 18.6%) or cytological endometritis (30.9 vs. 32.8%). Prevalence of clinical endometritis increased in cows that had calving problems (32.6 vs. 15.9%) and metritis (40.6 vs. 15.8%). Metritis increased prevalence of cytological endometritis (50.7 vs. 23.5%). Treatment with GnRH did not affect pregnancy per artificial insemination at 32 (37.6 vs. 38.6%) or 74 d after artificial insemination (35.0 vs. 31.5%), but reduced pregnancy loss (6.8 vs. 18.1%). No overall effect of GnRH treatment on hazard of pregnancy was observed; however, an interaction between GnRH treatment and ovulation showed that GnRH-treated cows that ovulated had increased hazard of pregnancy by 300 DIM compared with GnRH-treated and control cows that did not ovulate (hazard ratio = 2.0 and 1.3, respectively), but similar to control cows that ovulated (hazard ratio = 1.1). Gonadotropin-releasing hormone early postpartum induced ovulation without affecting uterine health, but failed to improve pregnancy per artificial insemination or time to pregnancy, although it reduced pregnancy loss.  相似文献   

16.
Our objectives were to compare reproductive responses of dairy cows receiving timed artificial insemination (AI) either at 48 or 72 h after induction of luteolysis and supplemented or not with estradiol cypionate (ECP). Holstein cows (971) had their estrous cycles presynchronized with injections of PGF at 37 and 51 d in milk (DIM) and then received an injection of GnRH at 64 DIM and an injection of PGF at 71 DIM. Cows were then assigned to a 2 × 2 factorial randomized block experiment; cows in the CoSynch 48 h (CoS48) received a final injection of GnRH concurrent with timed AI 48 h after PGF, whereas cows in the CoSynch 72 h (CoS72) received GnRH and timed AI 72 h after PGF. Half of the cows in each CoSynch protocol received an injection of 1 mg of ECP 24 h after PGF. Therefore, the 4 treatments were as follows: CoS48-NECP (n = 240), CoS72-NECP (n = 246), CoS48-ECP (n = 245), and CoS72-ECP (n = 240). Blood was sampled at 7 d before and at the first GnRH of the CoSynch from all cows for analysis of progesterone concentration in plasma. Cows were classified as anovular when progesterone was less than 1.0 ng/mL in both samples. Blood was also sampled during proestrus from a subset of 123 cows to measure concentrations of estradiol and at 7 d after timed AI to measure concentrations of progesterone. Ovaries from the same subset of 123 cows were examined by ultrasonography to determine ovulatory follicle diameter and incidence of ovulation. Pregnancy was diagnosed at 40 and 68 d after AI. Prevalence of cyclic cows was 72.4% and was similar among treatments. Concentrations of estradiol increased after ECP treatment and at 72 h of proestrus with CoS72. Pregnancy at 40 and 68 d after AI and pregnancy loss were not affected by timing of AI or supplemental ECP. Delaying timed AI to 72 h and supplementation with ECP increased the proportion of cows displaying estrus at AI, and cows detected in estrus had increased pregnancy per AI associated with improved ovulation and increased postovulatory progesterone concentration. These results indicate that extending the proestrus by delaying timed AI from 48 to 72 h plus supplemental ECP, despite increased expression of estrus at timed AI, did not improve reproductive performance of lactating dairy cows at first AI.  相似文献   

17.
The objectives of the current study were to investigate the efficacy of PGF as a therapy to reduce the prevalence of subclinical endometritis and improve pregnancy per artificial insemination (P/AI) in cows subjected to a timed artificial insemination (AI) program. A total of 1,342 lactating Holstein dairy cows were allocated randomly at 25 ± 3 d in milk (DIM) to remain as untreated controls (control, n = 454) or to receive a single PGF treatment at 39 ± 3 DIM (1PGF, n = 474) or 2 treatments with PGF at 25 ± 3 and 39 ± 3 DIM (2PGF, n = 414). All cows were enrolled in the double Ovsynch program at 48 ± 3 DIM and were inseminated at 75 ± 3 DIM. A subset of 357 cows had uterine samples collected for cytological examination at 25 ± 3, 32 ± 3, and 46 ± 3 DIM to determine the percentage of polymorphonuclear leukocytes (PMNL). Subclinical endometritis was defined by the presence of ≥5% PMNL. Vaginal discharge score was evaluated at 25 ± 3 DIM and used to define the prevalence of purulent vaginal discharge. Body condition score was assessed at 25 ± 3 DIM. Pregnancy was diagnosed 32 d after AI and reconfirmed 28 d later. At 32 ± 3 DIM, the prevalence of subclinical endometritis was reduced by treatment with PGF at 25 ± 3 DIM in 2PGF (control = 23.5% vs. 1PGF = 28.3% vs. 2PGF = 16.7%); however, this benefit disappeared at 46 ± 3 DIM, and 14% of the cows remained with subclinical endometritis. One or 2 treatments with PGF did not influence P/AI on d 32 or 60 after timed AI, which averaged 39.9 and 35.2%. Similarly, treatment with PGF had no effect on pregnancy loss between 32 and 60 d of gestation (11.9%). Cows diagnosed with both purulent vaginal discharge and subclinical endometritis had the lowest P/AI and the highest pregnancy loss compared with those diagnosed with only 1 of the 2 diseases or compared with cows having no diagnosis of uterine diseases. Interestingly, subclinical endometritis depressed P/AI and increased pregnancy loss only when it persisted until 46 DIM. On d 32 after AI, cows not diagnosed with subclinical endometritis and those that resolved subclinical endometritis by 46 DIM had greater P/AI than those that remained with subclinical endometritis at 46 DIM (45.4 and 40.0 vs. 25.0%, respectively). Similar to P/AI, cows not diagnosed with subclinical endometritis and those that resolved subclinical endometritis by 46 DIM had less pregnancy loss than those with subclinical endometritis at 46 DIM (9.6 and 13.5 vs. 43.9%, respectively). One or 2 treatments with PGF before initiation of the timed AI program were unable to improve uterine health, P/AI, and maintenance of pregnancy in lactating dairy cows. Cows diagnosed with both purulent vaginal discharge and subclinical endometritis had the greatest depressions in measures of fertility at first AI, particularly when subclinical endometritis persisted in the early postpartum period.  相似文献   

18.
《Journal of dairy science》2022,105(1):831-841
The objectives of this study were to determine the effects of GnRH at the time of artificial insemination (AI) on ovulation, progesterone 7 d post-AI, and pregnancy in cows detected in estrus using traditional methods (tail chalk removal and mount acceptance visualization) or an automated activity-monitoring (AAM) system. We hypothesized that administration of GnRH at the time of AI would increase ovulation rate, plasma progesterone post-AI, and pregnancy per AI (P/AI) in cows detected in estrus. In experiment 1, Holstein cows (n = 398) were blocked by parity and randomly assigned to receive an injection of GnRH at the time of estrus detection/AI (GnRH, n = 197) or to remain untreated (control, n = 201) on 4 farms. The GnRH was administered as 100 µg of gonadorelin acetate. Ovarian structures and plasma progesterone were assessed in a subset of cows (GnRH, n = 52; control, n = 55) in experiment 1 at the time of AI and 7 d later. In experiment 2, a group of 409 cows in an AAM farm were enrolled as described for experiment 1 (GnRH, n = 207; control, n = 202). Data were categorized for parity (primiparous vs. multiparous), season (cool vs. warm), number of services (first vs. > first), DIM (>150 DIM vs. ≤150 DIM), and for AAM cows in experiment 2 for activity level (high: 90–100 index vs. low: 35–89 index). Pregnancy diagnosis was performed between 32 and 45 d post-AI (P1) and 60 to 115 d post-AI (P2). In experiment 1, there was no difference in plasma progesterone at day of estrus detection (control = 0.09 ng/mL vs. GnRH = 0.16 ng/mL), 7 d later (control = 2.03 ng/mL vs. GnRH = 2.18 ng/mL), and ovulation rate (GnRH = 83.2% vs. control = 77.9%) between treatments. There were no effects of GnRH in experiment 1 for P/AI at P1 (control = 43.3% vs. GnRH = 38.6%), P2 (control = 38.4% vs. GnRH = 34.5%), and for pregnancy loss (control = 9.8% vs. GnRH = 8.2%). In experiment 2, there were no effects of GnRH for P/AI at P1 (control = 39.6% vs. GnRH = 40.1%), P2 (control = 35.0% vs. GnRH = 37.4%), and for pregnancy loss (control = 9.5% vs. GnRH = 6.2%). There was a tendency for a parity effect on P/AI for P1, but not P2 or for pregnancy loss. High-activity cows had greater P/AI in P1 (low activity = 27.9% vs. high activity = 44.1%), P2 (low activity = 21.8% vs. high activity = 41.2%), and lower pregnancy loss (low activity = 20.7% vs. high activity = 5.1%), but there were no interactions between treatment and activity level. The current study did not support the use of GnRH at estrus detection to improve ovulatory response, progesterone 1 wk post-AI, and P/AI. More research is needed to investigate the relationship between GnRH at the time of AI and activity level in herds using AAM systems.  相似文献   

19.
《Journal of dairy science》2022,105(10):8523-8534
The objectives of this retrospective observational study were to determine the associations of anogenital distance (AGD) with (a) postpartum estrous activity, (b) diameter of the preovulatory follicle, (c) intensity of estrous expression, (d) postestrus ovulation, (e) corpus luteum (CL) size, and (f) concentrations of progesterone at estrus and on d 7 after estrus. Lactating Holstein cows (n = 178; 55 primiparous, 123 multiparous) were enrolled into the study during the first postpartum week. All cows were continuously monitored by a pedometer-based automated activity monitoring (AAM) system for estrus. Postpartum estrous activity was assessed using the AAM estrus alerts, in which cows with at least one true estrus alert (i.e., a relative increase in steps from each cow's baseline detected by the AAM and the presence of at least one follicle >15 mm, a CL <20 mm, or no CL detected by ultrasound) by the first 50 d in milk (DIM) were considered to have commenced estrous activity. At the estrus alert >60 DIM, ovulation was determined by ultrasound at 24 h, 48 h, and 7 d after estrus, and blood samples were collected at estrus alert and on d 7 after estrus for progesterone analysis. The AGD was measured from the center of the anus to the base of the clitoris and classified as either short- or long-AGD using 2 cut-points of 148 mm (predictive of the probability of pregnancy to first insemination; short-AGD, n = 115; long-AGD, n = 63) and 142 mm (the median AGD; short-AGD, n = 90; long-AGD, n = 88). Regardless of the cut-point used, early postpartum estrous activity by 50 DIM (67 vs. 54%), duration of estrus (11.6 vs. 9.7 h), and preovulatory follicle diameter (20 vs. 19 mm) were greater in short-AGD than in long-AGD cows. Increased peak of activity at estrus in short-AGD cows (354 vs. 258% mean relative increase) was affected by an interaction between AGD and parity in which multiparous long-AGD cows had lesser relative increase in activity than primiparous cows (217 vs. 386%, respectively). Mean progesterone concentration at estrus was lesser in short-AGD (0.47 vs. 0.61 ng/mL) than in long-AGD cows. The ovulatory response at 24 h did not differ, but at 48 h (91 vs. 78%) and on d 7 after estrus (97 vs. 84%) it was greater in short-AGD cows. Although CL diameter on d 7 after estrus did not differ, short-AGD cows had greater progesterone concentration 7 d after estrus than long-AGD cows (4.1 vs. 3.2 ng/mL, respectively). In conclusion, greater proportions of short-AGD cows commenced estrous activity by 50 DIM, had larger preovulatory follicles, exhibited greater duration of estrus, had reduced progesterone concentration at estrus, had greater ovulation rates and progesterone concentration 7 d after estrus compared with long-AGD cows, with no difference in CL size between AGD groups. Because all the differences in physiological characteristics of short-AGD cows reported herein favor improved reproductive outcomes, we infer that these are factors contributing to improved fertility reported in short-AGD cows compared with long-AGD cows.  相似文献   

20.
The objective was to determine if reducing the interval from presynchronization to the first GnRH injection (G1) of a timed artificial insemination (AI) protocol improves pregnancy per AI. One thousand two hundred fourteen Holstein cows, at 37 ± 3 d in milk (DIM), were stratified by parity, DIM, and milk yield in the first month postpartum and randomly assigned to control (n = 412), 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, then enrolled in a timed AI protocol 14 d later; PShort (n = 410), 2 injections of PGF2α at 40 ± 3 and 54 ± 3 DIM, then enrolled in a timed AI protocol 11 d later; or PShortG (n = 392), same as PShort, but with an injection of GnRH 7 d before G1. All cows received the same timed AI protocol (d 65, G1; d 72, PGF2α; d 73, 1 mg of estradiol cypionate; d 75, AI). A subset of 1,000 cows had their ovaries examined by ultrasonography at G1 and 7 d later when PGF2α of the timed AI was given to determine presence of corpus luteum (CL) and ovulation to G1. Pregnancy was diagnosed on d 38 after timed AI, and pregnant cows were reevaluated for pregnancy 4 wk later. Altering the interval between presynchronization and G1 did not affect the proportion of cows with a CL at G1, but GnRH 7 d before G1 increased the proportion of cows with a CL. Ovulation to G1 was greater for 11 compared with the 14 d interval, but GnRH did not improve ovulation. The increased ovulation to G1 when the interval was reduced from 14 to 11 d was observed only in cows with a CL at G1, but treatment did not affect ovulation in cows without a CL at G1. Treatment affected the pregnancy per AI on d 38 and 66 after insemination, and they were greater for the 11 compared with 14-d interval, but addition of GnRH did not improve pregnancy per AI. Cows ovulating to G1 had greater pregnancy per AI regardless of whether or not they had a CL at G1. Reducing the interval from presynchronization to initiation of the timed AI protocol from 14 to 11 d increased ovulation to G1 and pregnancy per AI in lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号