首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The objective of this study was to monitor the dry matter intake (DMI), metabolic status, uterine health, and resumption of cyclicity in cows with similar genetic merit for milk production traits but with either good (Fert+) or poor genetic merit (Fert−) for fertility traits. Twenty-six cows were enrolled in the study and data are reported for 15 Fert+ and 10 Fert− cows that completed the study. All cows received a total mixed ration diet during early lactation and were turned out to pasture in late spring. Dry matter intake was recorded daily from wk −2 to 5 relative to parturition. Blood metabolites and metabolic hormones were measured from wk −2 to 8 relative to parturition. Milk production, body condition score, and body weight until wk 35 of lactation are reported. To monitor uterine health, vaginal mucus was scored weekly on a scale of 0 (no pus) to 3 (≥50% pus) from parturition to wk 8 and uterine polymorphonuclear neutrophil count was measured at wk 3 and 6 postpartum. Prepartum DMI was similar between genotypes, but Fert+ cows had significantly greater DMI than Fert− cows (19.7 vs. 16.8 kg of dry matter/d) during the postpartum period. Energy balance at wk 1 was significantly greater in Fert+ cows than in Fert− cows [2.3 vs. −1.12 unité fourragère lait (UFL)/d]. The Fert+ cows had significantly greater daily milk solids production (1.89 vs. 1.74 kg/d) and tended to have greater daily milk yield (24.2 vs. 22.3 kg/d). The Fert+ cows had significantly greater mean circulating insulin-like growth factor-I (102.62 vs. 56.85 ng/mL) and tended to have greater mean circulating insulin (3.25 vs. 2.62 μIU/mL) compared with Fert− cows from wk −2 to 8 relative to parturition. Mean circulating glucose (3.40 vs. 3.01 mmol/L) concentrations were significantly greater in Fert+ cows compared with Fert− cows from wk −2 to 3 relative to parturition. The Fert+ cows maintained significantly greater mean body condition score throughout lactation compared with Fert− cows (2.98 vs. 2.74 units). Moreover, Fert+ cows had better uterine health compared with Fert− cows, as evidenced by lower weekly vaginal mucus scores from wk 2 to 6 postpartum and, based on uterine cytology, smaller proportions were classified as having endometritis at wk 3 (0.42 vs. 0.78) and 6 (0.25 vs. 0.75). Also, a significantly greater proportion of Fert+ cows had resumed cyclicity by wk 6 postpartum (0.86 vs. 0.20) compared with Fert− cows. Hence, we report for the first time that genetic merit for fertility traits is associated with postpartum uterine health status. Superior uterine health and earlier resumption of cyclicity may be mediated through differences in DMI, energy balance, insulin, insulin-like growth factor-I, and body condition score profiles. Importantly, phenotypic improvement in fertility traits was achieved without antagonizing milk production.  相似文献   

2.
Eighty-two multiparous cows of high and low genetic merit were fed one of two isonitrogenous (19.3% crude protein), isoenergetic (11.3 MJ of metabolizable energy) diets that differed in ratio of rumen-undegradable protein to rumen-degradable protein. Factors that influenced reproductive performance were investigated using logistic regression and survival analysis. Significant associations were identified between reproductive performance and indicators associated with nutrient balance. Cows with higher dry matter intake were more likely to show signs of estrus at first ovulation and to become pregnant by d 150 of lactation. Increased ratio of plasma glucose to 3-hydroxybutyrate was associated with a greater probability of estrous expression at first ovulation. Concentrations of plasma cholesterol were positively associated with expression of estrus at first ovulation, interval from calving to conception, and likelihood of conception and pregnancy. Greater concentrations of nonesterified fatty acids in plasma were associated with a lower probability of conception by d 150 of lactation. Increased yield of fat-corrected milk during early lactation was negatively associated with expression of estrus at first ovulation and probability of pregnancy by d 150 of lactation. Cows of high genetic merit were less likely to show signs of estrus at first ovulation. Cows fed the high rumen-degradable-protein diet that also lost more body weight during early lactation were less likely to conceive at first service and to have a prolonged interval from calving to conception. Continued selection for increased production of milk and a more negative nutrient balance during early lactation may reduce reproductive performance particularly for cows fed high concentrations of rumen-degradable protein.  相似文献   

3.
The objective of this study was to estimate the heritability of a number of traditional and endocrine fertility traits in addition to d-56 predicted milk yield (MY56), and the genetic and phenotypic correlations between these traits. Various fixed effects such as season, year, herd, lactation number, diet, percentage Holstein (PCH) of the cow, and occurrence of uterine infection (UI), dystocia (DYS), and retained placenta (RP) were also investigated. Data collected for 1212 lactations of 1080 postpartum (PP) Holstein-Friesian dairy cows in eight commercial farms between 1996 and 1999 included thrice weekly milk progesterone samples, calving and insemination dates, various reproductive health records, monthly/bimonthly production records, three-generation pedigrees, and PCH information. Genetic models were fitted to the data to obtain heritabilitites and correlations using ASREML. Estimates of heritability for interval to commencement of luteal activity PP (lnCLA), length of the first luteal phase PP (lnLutI) and occurrence of persistent CL type I (PCLI) were 0.16, 0.17, and 0.13, respectively. Heritabilities for pregnancy to first service (PFS), interval to first service (IFS), and MY56 were 0.14, 0.13, and 0.50, respectively. Genetic regressions of lnCLA and lnLutI on PTA of the sire for milk, fat, and protein yields, and PIN95 were investigated. Regressions of lnCLA were positive and significant on fat yield, while regressions of lnLutI on both protein yield and PIN95 were negative and significant. Genetic correlations of endocrine fertility traits (lnCLA, lnLutI, and PCLI) with MY56 were high (0.36, P < 0.05; -0.51, P < 0.05; and -0.31, P < 0.1, respectively). Percentage Holstein of the cows had no significant effect on any of the fertility parameters monitored. This work emphasizes the strong genetic correlation of fertility with production traits and, therefore, highlights the urgent requirement for selective breeding for fertility in the United Kingdom. The high heritability of endocrine fertility traits stress their potential value for inclusion in a selection index to improve fertility.  相似文献   

4.
《Journal of dairy science》2022,105(6):5519-5533
A strong adaptive immune response has been reported to have positive effects on fertility; therefore, we investigated antibody- and cell-mediated adaptive immune responses (AMIR and CMIR, respectively) and their associations with reproductive phenotypes using a population of animals that differed in their estimated genetic merit for fertility traits (fertility breeding value; FertBV). Holstein-Friesian heifers (n = 528) grazed on pasture in 4 herds based on age. These herds included 277 heifers of positive (POS) FertBV and 251 of negative (NEG) FertBV. The adaptive immune response (IR) was evaluated before puberty at 7.5 mo of age and used to rank animals as high, average, or low for AMIR, CMIR, and overall IR (combined CMIR and AMIR). The animals were studied from 12 wk of age through to the end of their second lactation to measure growth, puberty, and timing and success of fertility phenotypes, including those related to ovulation and pregnancy. Initial analysis indicated no difference in fertility outcomes between cows ranked as high or average for AMIR (n = 55, n = 407, respectively), CMIR (n = 87, n = 354, respectively), and IR (n = 29, n = 470, respectively), so these groups were pooled as HiAv-IR. Proportions of heifers of POS FertBV were similar within HiAv and low categories across AMIR (0.52 and 0.58, respectively), CMIR (0.51 and 0.59, respectively), and IR (0.53 and 0.48, respectively). Heifers with HiAv-IR had a greater average daily weight gain from 13 to 52 wk of age (661 g, 95% confidence interval 652, 669 vs. 619 g, 95% confidence interval 591, 647) and tended to be younger at puberty (371 d, 95% confidence interval 366, 377 vs. 385 d, 95% confidence interval 369, 401) than low-IR heifers. Low-CMIR cows of a NEG FertBV had a >40 d longer calving to first ovulation interval during their first lactation compared with HiAv-CMIR NEG FertBV cows. Low-CMIR cows also had decreased pregnancy rates at both 3 wk (25% ± 7% vs. 42% ± 3%; least squares means ± standard error) and 6 wk (33% ± 7% vs. 54% ± 3%; least squares means ± standard error) into the seasonal breeding period during their first lactation, compared with HiAv-CMIR cows. In summary, although the number of POS and NEG FertBV cows was similar in each immune group; interaction effects between FertBV and immune ranking on reproductive phenotypes are evident when cows were ranked by the overall IR. There were also associations between dairy cows' CMIR ranking and ability to return to estrus and become pregnant early in the breeding period, which will have benefits in seasonal breeding systems.  相似文献   

5.
The hypothesis of this study was that cows with good genetic merit for fertility traits (Fert+) would produce oocytes and embryos of greater quality than cows with poor genetic merit for fertility traits (Fert?) and that mRNA expression of candidate genes would reflect the observed differences in quality. The aim of the study, therefore, was to determine the effect of genetic merit for fertility traits on morphological classification and mRNA abundance of key genes in immature oocytes and cumulus cells following ovum pick-up and in embryos following superovulation, artificial insemination (AI), and uterine flushing. In experiment 1, 17 Fert+ and 11 Fert? cows, ranging from 54 to 84 d in milk, were submitted to ovum pick-up on 4 occasions during a 2-wk period. Recovered cumulus–oocyte complexes (COC) were morphologically graded. Oocytes and cumulus cells were separated, and mRNA abundance of genes associated with oocyte developmental competence was measured. There was no effect of genotype on the distribution of COC grades or on the mRNA abundance of the candidate genes in grade 1 COC. In experiment 2, 20 Fert+ and 19 Fert? cows, ranging from 71 to 189 d in milk, were submitted to superovulation and AI. The uteri of cows that responded to the superovulation protocol (17 Fert+ and 16 Fert? cows) were nonsurgically flushed 7 d postovulation. Recovered embryos were morphologically graded, and mRNA abundance of genes associated with embryo development was measured in grade 1 blastocysts. The response to the superovulation protocol was assessed by counting the number of codominant follicles on the day of AI, which was similar for both genotypes (22.0 ± 9.7 and 19.8 ± 8.2 for Fert+ and Fert? cows, respectively). There was no effect of genotype on the proportion of transferable embryos recovered or on the mRNA abundance of the candidate genes tested in the grade 1 blastocysts. Of the total embryos classified as blastocysts, however, the Fert+ cows tended to have a greater proportion of grade 1 blastocysts compared with Fert? cows (90% vs. 64%, respectively). In conclusion, genetic merit for fertility traits had a no effect on mRNA abundance of the candidate genes that were examined in immature oocytes and cumulus cells and in embryos recovered after superovulation. The observed differences in morphological blastocyst quality following superovulation would suggest that the superior reproductive performance of Fert+ cows could arise during the later stages of embryo development from d 7 until maternal recognition of pregnancy.  相似文献   

6.
Genetic and phenotypic parameters for Mexican Holstein cows were estimated for first- to third-parity cows with records from 1998 to 2003 (n = 2,971-15,927) for 305-d mature equivalent milk production (MEM), fat production (MEF), and protein production (MEP), somatic cell score (SCS), subsequent calving interval (CAI), and age at first calving (AFC). Genetic parameters were obtained by average information matrix-REML methodology using 6-trait (first-parity data) and 5-trait (second- and third-parity data) animal models. Heritability estimates for production traits were between 0.17 ± 0.02 and 0.23 ± 0.02 for first- and second-parity cows and between 0.12 ± 0.03 and 0.13 ± 0.03 for third-parity cows. Heritability estimates for SCS were similar for all parities (0.10 ± 0.02 to 0.11 ± 0.03). For CAI, estimates of heritability were 0.01 ± 0.05 for third-parity cows and 0.02 ± 0.02 for second-parity cows. The heritability for AFC was moderate (0.28 ± 0.03). No unfavorable estimates of correlations were found among MEM, MEF, MEP, CAI, and SCS. Estimates of environmental and phenotypic correlations were large and positive among production traits; favorable between SCS and CAI; slightly favorable between MEM, MEF, and MEP and SCS, between AFC and SCS, and between SCS and CAI; and small but unfavorable between production traits and CAI. Estimates of genetic variation and heritability indicate that selection would result in genetic improvement of production traits, AFC, and SCS. Estimates of both heritability and genetic variation for CAI were small, which indicates that genetic improvement would be difficult.  相似文献   

7.
Evaluating fertility traits based on endocrine progesterone profiles is becoming a promising option to improve dairy cow fertility. Several studies have been conducted on endocrine fertility traits, mainly in the Holstein breed. In this study, focusing also on the Swedish Red (SR) breed, genetic parameters were estimated for classical and endocrine fertility traits, the latter based on in-line milk progesterone records obtained for 14 Swedish herds using DeLaval Herd Navigator (DeLaval International, Tumba, Sweden). A total of 210,403 observations from 3,437 lactations of 1,107 SR and 1,538 Holstein cows were used. Mixed linear animal models were used for estimation of genetic parameters. Least squares means analysis showed that Holstein cows had a 2.5-d-shorter interval from calving to commencement of luteal activity (C-LA) and longer length of first inter-ovulatory interval (IOI) than SR cows. The highest mean interval for C-LA, IOI, and first luteal phase length (LPL) was observed in the fourth parity. The incidence of short (<18 d), normal, (18–24 d), and long (>24 d) IOI was 29.3, 40.7, and 30%, respectively. Genetic analysis indicated moderate heritability (h2) for C-LA (h2 = 0.24), luteal activity during the first 60 d in milk (LA60, h2 = 0.15), proportion of samples with luteal activity (PLA, h2 = 0.13), and calving to first heat (CFH, h2 = 0.18), and low heritability estimates for LPL (h2 = 0.08) and IOI (h2 = 0.03) in the combined data set for both breeds. Similar heritability estimates were obtained for each breed separately except for IOI and LPL in SR cows, for which heritability was estimated to be zero. Swedish Red cows had 0.01 to 0.06 higher heritability estimates for C-LA, LA60, and PLA than did Holstein cows. Calving interval had moderate heritability among the classical traits for Holstein and the combined data set, but h2 was zero for SR. Commencement of luteal activity had a strong genetic correlation with LA60 (mean ± SE; ?0.88 ± 0.06), PLA (?0.72 ± 0.11), and CFH (0.90 ± 0.04). Similarly, CFH had a strong genetic correlation with IOI (0.98 ± 0.20). Number of inseminations per series showed a weak genetic correlation with all endocrine traits except IOI. Overall, endocrine traits had higher heritability estimates than classical traits in both breeds, and may have a better potential to explain the actual reproductive status of dairy cows than classical traits. This might favor inclusion of some endocrine fertility traits—especially those related to commencement of luteal activity—as selection criteria and breeding goal traits if recording becomes more common in herds. Further studies on genetic and genomic evaluations for endocrine fertility traits may help to provide firm conclusions. A prerequisite is that the data from automatic devices be made available to recording and breeding organizations in the future and included in a central database.  相似文献   

8.
The incidence of normal and atypical progesterone profiles in Swedish dairy cows was studied. Data were collected from an experimental herd over 15 yr, and included 1,049 postpartum periods from 183 Swedish Holstein and 326 Swedish Red and White dairy cows. Milk progesterone samples were taken twice weekly until initiation of cyclical ovarian activity and less frequently thereafter. Progesterone profiles were 1) normal profile: first rise in milk progesterone above the threshold value before d 56 postpartum, followed by regular cyclical ovarian activity (70.4%); 2) delayed onset of cyclical ovarian activity: low milk progesterone the first 56 d postpartum (15.6%); 3) cessation of cyclical ovarian activity: ovarian activity resumed within 56 d postpartum, but ceased for a period of 14 d or more (6.6%); and 4) prolonged luteal phase: ovarian activity resumed within 56 d postpartum, but milk progesterone remained elevated in the nonpregnant cow for a period of 20 d or more (7.3%). Swedish Holsteins had 1.5 times higher risk of atypical profile than Swedish Red and Whites. Risk of atypical profiles was 0.5 and 0.7 times lower for older cows compared with first-parity cows; 2.3 times higher for cows in tie-stalls compared with those in loose housing; 2.6 times higher for cows calving during winter compared with summer; 0.5 times lower for cows in earlier (1994-1999) calving-year groups compared with the most recent (2000-2002); 2.5 times higher for cows with planned extended calving interval compared with conventional calving interval; and 2.2 times higher for an atypical profile in previous lactation compared with a normal profile. Cows with atypical profiles had a 15-d increase in interval from calving to first artificial insemination and an 18-d increase in interval from calving to conception. Progesterone samples taken within the first 60 d postpartum were used to calculate the percentage of samples above the threshold value of luteal activity. This measure had a significantly different mean in profiles and can be used to separate delayed onset of cyclical ovarian activity profiles and prolonged luteal phase profiles from normal. Thereby, it may be a more effective tool than measurements based only on the onset of ovarian cyclical activity in genetic evaluation of early postpartum fertility in dairy cows.  相似文献   

9.
The recent decline in dairy cow fertility appears to be a feature of several countries and is often linked to increased milk production, but its causes are not always obvious. A fully recorded 200-cow dairy herd, split into 2 genetic lines maintained on 2 production systems, was used to investigate the relationship between several measures of fertility, production, and energy balance. The 2 genetic lines were composed of a selection line, derived from the highest genetic merit bulls available, and a control line, maintained at the average of UK genetic merit at the time of mating. The production systems were a high-concentrate and a high-forage system. Thrice-weekly milk progesterone samples allowed an objective measurement of luteal cycling activity, and farm observations of estrus, services, and calving provided data on various measures of fertility. Energy balance in early lactation was calculated from daily live weight and weekly BCS measurements. Control line cows commenced luteal activity (C-LA) 6 d before selection line cows, had their first heat 14 d earlier, and had longer gestation periods by 3.7 d. They also had a lower incidence of silent heats. Cows on the high-forage system commenced luteal activity 6 d before those on the high-concentrate system, had longer gestation intervals by 3.9 d, held to first service better, had longer luteal phases and shorter interluteal periods in their estrus cycles. Characteristics of energy balance were used to see if they could account for the fertility differences between both genetic lines and systems. The commencement of luteal activity and day of first heat were analyzed using a REML mixed model approach. Mean energy content and mean energy balance over the first 25 d of lactation had an effect on C-LA and accounted for the differences found between production systems but not genetic lines. Day of energy balance nadir, mean energy content in the first 25 d, and C-LA affected day of first heat, but the differences between genetic lines were still apparent. These results suggest a link between high performance and reduced dairy cow fertility; high performance originating from different feeding systems was largely due to differences in energy balance, whereas those originating from genetics remained when energy balance characteristics were taken into account. This suggests a real genetic change in fertility due to selection for high genetic merit.  相似文献   

10.
The objectives of this study were (1) to analyze the agreement of a standard laboratory ELISA for progesterone (P4) with an automated on-farm ELISA kit operated under commercial conditions in 1,297 milk samples from 50 dairy cows; (2) to study the influence of the method of detection of luteal activity on genetic parameters of fertility traits based on P4 measured with an automated on-farm ELISA once weekly from wk 3 to 9 postpartum in the milk of 1,304 cows; and (3) to study the influence of sampling frequency (once or twice weekly from wk 3 to 9) on the same traits from 296 cows. Luteal activity can be detected when there is an active corpus luteum in the ovary producing P4 and indicating the onset of reproductive cyclicity after calving. The on-farm ELISA overestimated P4 contents by a mean square error of prediction of 2.76 ng/mL and had an intermediate Spearman correlation with the laboratory kit (0.54). For the second objective, the postpartum interval to the commencement of luteal activity (C-LA), proportion of luteal activity between d 15 and 63 postpartum (P-LA), calculated as the number of samples above the threshold for high P4 values divided by the number of all samples, and delay of first ovulation (DOV1), defined as C-LA occurring later than d 45 postpartum, were derived from the P4 profiles. Both C-LA and DOV1 were determined by (a) thorough qualitative visual inspection of the profile, (b) the profile's mean as threshold for the first increase in P4 postpartum, indicating commencement of luteal activity, and (c) 3 ng/mL as threshold for the first increase in P4, a value that has been used by many other studies. Similarly, P-LA was determined by using methods (b) and (c). Estimates of heritability were 0.04 to 0.13 for C-LA, 0.12 to 0.23 for P-LA, and 0.03 to 0.07 for DOV1. Genetic correlation of P-LA with C-LA and with the profile's mean P4 was ?1.00. The profile's mean had a higher estimate of heritability (0.11–0.12) than C-LA or DOV1. It can be calculated as the arithmetic mean of all P4 values of a profile, whereas C-LA, P-LA, and DOV1 need a definition of a threshold for high P4 values. We therefore suggest the profile's mean as a promising candidate for further research. For the third objective, once-weekly sampling was mimicked by neglecting every second sample, and C-LA and DOV1 shifted toward a later onset of cyclicity. Thus, a common standard for sampling regimen and detection algorithm is essential to avoid incompatibility between studies.  相似文献   

11.
《Journal of dairy science》2021,104(9):10382-10398
New Zealand's Fertility Breeding Value (FertBV) is reported as the percentage of a sire's daughters that calve in the first 42 d of the seasonal calving period and is an estimate of genetic merit for fertility for dairy cattle. Reproductive physiology, milk production, and changes in body weight and body condition score of 2 groups of cows divergent in FertBV (+5.0%: POS; −5.1%: NEG) were characterized during their first 2 lactations. Cows grazed fresh pasture and were managed in a seasonal calving system; they were bred by artificial insemination on observed estrus for the entire breeding period (98 d in lactation 1 and 76 d in lactation 2). During lactation 1, all animals were primiparous and were randomly allocated to 1 of 2 herds, ensuring each herd was balanced for FertBV and expected calving date. During lactation 2, cows that became pregnant during lactation 1 were managed as 1 herd. Cows not inseminated in the first 42 d of the breeding season were examined for the presence of a corpus luteum and treated with an anestrus program. On average, the interval from calving to ovulation was 19 d longer in lactation 1 and 10 d longer in lactation 2 for NEG FertBV cows. The percent of cows submitted for artificial insemination after 21 d (i.e., submission rate) was 38 and 25 percentage points greater in the POS FertBV cows during lactations 1 and 2, respectively. Pregnancy rate from 42 d of breeding was 33 and 30 percentage points greater, respectively. There was no effect of FertBV on vaginal discharge score postcalving; however, POS FertBV cows had a 50% lower risk of having subclinical endometritis (polymorphonuclear leukocytes >7%) 42 d postcalving. Interactions between FertBV and month relative to calving identified that NEG FertBV cows were fatter (greater body condition score) in the month before calving, but thinner between 3 and 5 mo postcalving. There was no effect of FertBV on lactation length, estimated 270-d milk yields, or daily milk, fat, or protein yields, and only small effects on milk fat and protein percentage across the lactations. In summary, the POS FertBV cows had superior uterine health, a shorter calving to ovulation interval, a greater submission rate, and a greater pregnancy rate earlier in the breeding season when compared with the NEG FertBV cohort. Based on these results, these may be useful phenotypes to include in genetic selection indices.  相似文献   

12.
The objective of this study was to quantify the genetic variation in normal and atypical progesterone profiles and investigate if this information could be useful in an improved genetic evaluation for fertility for dairy cows. The phenotypes derived from normal profiles included cycle length traits, including commencement of luteal activity (C-LA), interluteal interval, luteal phase length. and interovulatory interval. In total, 44,977 progesterone test-day records were available from 1,612 lactations on 1,122 primiparous and multiparous Holstein-Friesian cows from Ireland, the Netherlands, Sweden, and the United Kingdom. The atypical progesterone profiles studied were delayed cyclicity, prolonged luteal phase, and cessation of cyclicity. Variance components for the atypical progesterone profiles were estimated using a sire linear mixed model, whereas an animal linear mixed model was used to estimate variance components for the cycle length traits. Heritability was moderate for delayed cyclicity (0.24 ± 0.05) and C-LA (0.18 ± 0.04) but low for prolonged luteal phase (0.02 ± 0.04), luteal phase length (0.08 ± 0.05), interluteal interval (0.08 ± 0.14), and interovulatory interval (0.03 ± 0.04). No genetic variation was detected for cessation of cyclicity. Commencement of luteal activity, luteal phase length, and interovulatory interval were moderately to strongly genetically correlated with days from calving to first service (0.35 ± 0.12, 0.25 ± 0.14, and 0.76 ± 0.24, respectively). Delayed cyclicity and C-LA are traits that can be important in both genetic evaluations and management of fertility to detect (earlier) cows at risk of compromised fertility. Delayed cyclicity and C-LA were both strongly genetically correlated with milk yield in early lactation (0.57 ± 0.14 and 0.45 ± 0.09, respectively), which may imply deterioration in these traits with selection for greater milk yield without cognizance of other traits.  相似文献   

13.
Approximately 20 to 30% of cows diagnosed not pregnant 32 d after timed artificial insemination (TAI) lack a corpus luteum (CL), and cows submitted to a resynchronization protocol in the absence of a CL have about 10% fewer pregnancies per AI (P/AI) than cows with a CL. An understanding of luteal dynamics after synchronization of ovulation and TAI may help refine strategies for reinseminating cows failing to conceive. Lactating Holstein cows (n = 141) were synchronized for first TAI using a Double-Ovsynch protocol. Thrice weekly from 4 to 32 d after TAI, blood samples were collected for evaluation of plasma progesterone (P4) concentrations, and CL diameter was measured using transrectal ultrasonography. Pregnancy status was determined using transrectal ultrasonography 32 d after TAI. Nonsynchronized cows (n = 4) were removed from the study. For cows diagnosed pregnant 32 d after TAI (n = 57), P4 increased from 4 to 15 d and then remained constant until 32 d after TAI, whereas CL volume increased from 4 to 11 d and then remained constant until 32 d after TAI. For cows diagnosed not pregnant 32 d after TAI (n = 80), P4 profiles were evaluated using statistical cluster analysis based on the day after TAI that P4 decreased to <1 ng/mL, resulting in 5 clusters: (1) CL regression 15 d after TAI (1.3%), (2) CL regression 18 to 22 d after TAI (55.0%), (3) CL regression 25 to 27 d after TAI (17.5%), (4) CL regression 29 to 32 d after TAI (5.0%), and (5) CL maintained until 32 d after TAI (21.3%). Plasma pregnancy-associated glycoprotein (PAG) levels at 25 and 32 d after TAI differed among clusters and were below the cut-off value of the assay for the classification of cows as not pregnant for cows in clusters 2, 3, and 4, whereas more than half of the cows in cluster 5 had increased plasma PAG levels. We conclude that at least half of the nonpregnant cows that maintained their CL until 32 d after TAI were initially pregnant but underwent early pregnancy loss based on increased plasma PAG levels at 25 and 32 d after TAI.  相似文献   

14.
The objective of the present study was to characterize the phenotypic performance of cows with similar proportions of Holstein genetics, similar genetic merit for milk production traits, but with good (Fert+) or poor (Fert-) genetic merit for fertility traits. Specifically, we tested the hypothesis that cows with a negative estimated breeding value for calving interval would have superior fertility performance and would have detectable differences in body reserve mobilization and circulating concentrations of metabolic hormones and metabolites compared with cows that had a positive estimated breeding value for calving interval. For the duration of the study, cows were managed identically as a single herd in a typical grass-based, spring-calving production system. A total of 80 lactation records were available from 26 Fert+ and 26 Fert- cows over 2 consecutive years (2008 and 2009). During yr 1, cows were monitored during a 20-wk breeding season to evaluate reproductive performance. Milk production, body condition score (scale 1 to 5), body weight, grass dry matter intake, energy balance, and metabolic hormone and metabolite data were collected during both years. The Fert+ cows had greater daily milk yield (19.5 vs. 18.7 kg/d), shorter interval from calving to conception (85.6 vs. 113.8 d), and fewer services per cow (1.78 vs. 2.83). No difference between groups in grass dry matter intake, energy balance, or body weight was observed. The Fert+ cows maintained greater BCS during mid (2.84 vs. 2.74 units) and late lactation (2.82 vs. 2.73 units). Circulating concentrations of insulin-like growth factor-I were greater throughout the gestation-lactation cycle in Fert+ cows (148.3 vs. 128.2 ng/mL). The Fert+ cows also had greater circulating concentrations of insulin during the first 4 wk of lactation (1.71 vs. 1.24 μIU/mL). Analysis of records from national herd data verified the association between genetic merit for fertility traits and phenotypic reproductive performance; Fert+ cows (n = 2,436) required 11.1 d less to recalve than did Fert- cows (n = 1,388), and the percentage of cows that successfully calved for the second time within 365 and 400 d of the first calving was 8 and 13% greater for Fert+ compared with Fert- cows, respectively. These results demonstrate that genetic merit for fertility traits had a pronounced effect on reproductive efficiency, BCS profiles, and circulating concentrations of insulin-like growth factor-I.  相似文献   

15.
Genetic selection of dairy cattle in the United States has included reproductive traits (daughter pregnancy rate, DPR; heifer conception rate, HCR), which is believed to have partly contributed to halting the decline in reproductive performance. The objectives of the current study were to evaluate the association among genomic merit for DPR (GDPR) and HCR (GHCR) with estrous characteristics measured by an automated device. Holstein heifers (n = 1,005) were genotyped at 2 mo of age and were classified into quartiles (Q1 = lowest, Q4 = highest) according to the GDPR and GHCR values of the study population. At 10 to 11 mo of age, heifers were fitted with a collar that recorded activity and rumination and determined the occurrence of estrus according to changes in activity and rumination compared with the individual's baseline values. Estrous characteristics of spontaneous estruses (SPE) and PGF-synchronized estruses (PGSE) were recorded. Heifers had their estrous cycle synchronized with PGF and following detection of estrus received either artificial insemination or embryo transfer according to the herd's genetic selection program. Heifers in Q2 (17.7 ± 0.3 h) of GHCR tended to have longer SPE than heifers in Q4 (16.7 ± 0.3 h). The interaction between GDPR and GHCR was associated with the likelihood of activity peak (0 = no estrus, 100 = maximum activity) ≥80 at SPE because, among heifers in Q3 and Q4 of GHCR, those in Q1 of GDPR were less likely to have an activity peak ≥80. Heifers in Q1 and Q2 of GDPR had reduced hazard of estrus within 7 d of the first PGF treatment compared with heifers in Q4 of GDPR. Heifers in Q1 (16.1 ± 0.4 h) of GDPR had shorter PGSE than heifers in Q2 (17.6 ± 0.4 h) and Q4 (17.4 ± 0.4 h) and tended to have shorter PGSE than heifers in Q3 (17.4 ± 0.4 h). Rumination nadir on the day of PGSE was greater for heifers in Q1 (?30.1 ± 0.9 min/d) of GDPR compared with heifers in Q4 (?33.7 ± 0.9 min/d). Among heifers receiving only artificial insemination, those in Q1 of GHCR (adjusted hazard ratio = 0.65; 95% confidence interval = 0.48–0.88) became pregnant at a slower rate than heifers in Q4. Genomic merit for HCR was negatively associated with SPE but tended to be positively associated with hazard of pregnancy, whereas GDPR was positively associated with PGSE and hazard of estrus. Selection of dairy cattle for DPR and HCR may improve reproductive performance through different pathways, namely estrous characteristics and pregnancy establishment.  相似文献   

16.
This study investigated the hypothesis that dairy heifers divergent in genetic merit for fertility traits differ in the age of puberty and reproductive performance. New Zealand's fertility breeding value (FertBV) is the proportion of a sire's daughters expected to calve in the first 42 d of the seasonal calving period. We used the New Zealand national dairy database to identify and select Holstein-Friesian dams with either positive (POS, +5 FertBV, n = 1,334) or negative FertBV (NEG, ?5% FertBV, n = 1,662) for insemination with semen from POS or NEG FertBV sires, respectively. The resulting POS and NEG heifers were predicted to have a difference in average FertBV of 10 percentage points. We enrolled 640 heifer calves (POS, n = 324; NEG, n = 316) at 9 d ± 5.4 d (± standard deviation; SD) for the POS calves and 8 d ± 4.4 d old for the NEG calves. Of these, 275 POS and 248 NEG heifers were DNA parent verified and retained for further study. The average FertBV was +5.0% (SD = 0.74) and ?5.1% (SD = 1.36) for POS and NEG groups, respectively. Heifers were reared at 2 successive facilities as follows: (1) calf rearing (enrollment to ~13 wk of age) and (2) grazier, after 13 wk until 22 mo of age. All heifers wore a collar with an activity sensor to monitor estrus events starting at 8 mo of age, and we collected weekly blood samples when individual heifers reached 190 kg of body weight (BW) to measure plasma progesterone concentrations. Puberty was characterized by plasma progesterone concentrations >1 ng/mL in at least 2 of 3 successive weeks. Date of puberty was defined when the first of these samples was >1 ng/mL. Heifers were seasonally bred for 98 d starting at ~14 mo of age. Transrectal ultrasound was used to confirm pregnancy and combined with activity data to estimate breeding and pregnancy dates. We measured BW every 2 wk, and body condition and stature at 6, 9, 12, and 15 mo of age. The significant FertBV by day interaction for BW was such that the NEG heifers had increasingly greater BW with age. This difference was mirrored with the significant FertBV by month interaction for average daily gain, with the NEG heifers having a greater average daily gain between 9 and 18 mo of age. There was no difference in heifer stature between the POS and NEG heifers. The POS heifers were younger and lighter at puberty, and were at a lesser mature BW, compared with the NEG heifers. As a result, 94 ± 1.6% of the POS and 82 ± 3.2% of the NEG heifers had reached puberty at the start of breeding. The POS heifers were 20% and 11% more likely to be pregnant after 21 d and 42 d of breeding than NEG heifers (relative risk = 1.20, 95% confidence interval of 1.03–1.34; relative risk = 1.11, 95% confidence interval of 1.01–1.16). Results from this experiment support an association between extremes in genetic merit for fertility base on cow traits and heifer reproduction. Our results indicate that heifer puberty and pregnancy rates are affected by genetic merit for fertility traits, and these may be useful phenotypes for genetic selection.  相似文献   

17.
18.
Fertility traits were recently added to the evaluation of genetic merit, allowing for the selection of Holstein cattle with improved reproductive performance. In the current study, we investigated the associations among genomic merit for daughter pregnancy rate (GDPR) and heifer conception rate (GHCR) and physiological responses during proestrus and diestrus. Holstein heifers (n = 99) were classified based on GDPR [high = 3.26 ± 0.76 (1.6 to 5.3), n = 48; low = ?0.17 ± 0.75 (?1.8 to 1.0), n = 51] and GHCR [high = 2.75 ± 0.77 (1.5 to 5.5), n = 49; low = 0.06 ± 0.67 (?2.1 to 1.2), n = 50]. Heifers were fitted with an automated estrous detection device, were treated with PGF for synchronization of estrus, and received either artificial insemination or embryo transfer at detected estrus. Blood was sampled at the time of PGF treatment, within 24 h of the onset of estrus (d 0), and on d 7, 14, 19 ± 2, 28, and 35. Blood samples from all heifers were analyzed for concentrations of estradiol (d 0) and progesterone (on the day of PGF treatment and d 0, 7, and 14). Blood samples from heifers pregnant on d 38 ± 3 were analyzed for concentrations of progesterone (d 0, 7, 14, 19 ± 2, 28, and 35), pregnancy-specific protein B (d 19 ± 2, 28, and 35), and insulin-like growth factor 1 (d 0, 7, 14, 19 ± 2, 28, and 35). Expression of mRNA for interferon-stimulated gene 15 in peripheral leukocytes isolated from blood collected on d 19 ± 2 was determined. Ovaries were scanned by ultrasound daily from d 0 to 4 or until ovulation was detected. Heifers with low GHCR tended to be less likely to be detected in estrus (78.0 vs. 91.8%). Estradiol concentration on d 0 was greater for heifers with high GDPR (4.53 ± 0.23 vs. 3.79 ± 0.23 pg/mL). The ovulatory follicle was larger for heifers with high GDPR (16.28 ± 0.33 vs. 14.55 ± 0.35 mm), whereas heifers with high GHCR tended to have smaller ovulatory follicles (15.00 ± 0.31 vs. 15.83 ± 0.37 mm). Heifers with high GDPR tended to be more likely to ovulate within 96 h of the onset of estrus (90.7 vs. 75.0%). Among heifers pregnant on d 38 ± 3, GDPR and GHCR were not associated with mRNA expression for interferon-stimulated gene 15. Heifers with high GDPR had greater concentration of pregnancy-specific protein B from d 28 to 35 (3.03 ± 0.15 vs. 2.48 ± 0.1 ng/mL). Heifers with high GHCR tended to have greater insulin-like growth factor 1 concentration from d 7 to 35 (108.0 ± 3.2 vs. 97.7 ± 4.2 ng/mL). Our results suggest that selection for Holstein cattle for GDPR may have positive effects on reproductive performance through changes in ovarian follicle development and steroidogenesis. Although selection of Holstein cattle for GHCR may negatively affect estrous expression by affecting ovarian follicle growth, selection for GHCR may improve reproductive performance by altering the somatotropic axis.  相似文献   

19.
Relationships among commencement of luteal activity (C-LA), milk yield, and energy balance (EB) were investigated in 3 selection lines of Norwegian Red cows at the Norwegian University of Life Sciences from 1994 through 2001. The cows were selected for low genetic merit for milk yield (LMP), high genetic merit for milk yield (HMP), and a combination of high indices for milk yield and fertility (HI). Breeding values for fertility were based on 56-d nonreturn rate. The material included 268 lactations from 147 cows. Milk samples for progesterone analysis were drawn 3 times weekly from 1994 through 1998, and 2 times weekly from 1999 to 2001. Commencement of luteal activity was defined as the first 2 consecutive measurements of progesterone concentration >3 ng/mL not earlier than 10 d after calving. Selection line was significantly related to C-LA, so that the least squares mean days from calving to C-LA were 22.5, 30.4, and 27.2 d for LMP, HMP, and HI cows, respectively. The HMP cows produced more milk than the LMP cows. The average milk yield in the sixth week of lactation was 24.0, 27.1, and 25.3 kg for LMP, HMP, and HI cows, respectively. The interval to C-LA decreased for the HMP and HI cows after phenotypic adjustment for EB in the model. Least squares means for the interval to C-LA were 23.2, 29.7, and 25.6 d for the LMP, HMP, and HI cows, respectively, in a model that included parity, selection lines, and EB as covariates. Cumulated EB during the first 4 wk of lactation, which itself differed between selection lines, did not fully account for differences in interval to C-LA between selection lines. Thus, the results of the present investigation indicate that selection for milk yield negatively affects C-LA over and above the effects caused by concurrent changes in EB. The increase in days to C-LA caused by selection for high yields can be reduced if selection for milk yield is combined with fertility in the breeding program.  相似文献   

20.
First-lactation records on 836,452 daughters of 3,064 Norwegian Red sires were used to examine associations between culling in first lactation and 305-d protein yield, susceptibility to clinical mastitis, lactation mean somatic cell score (SCS), nonreturn rate within 56 d in heifers and primiparous cows, and interval from calving to first insemination. A Bayesian multivariate threshold-linear model was used for analysis. Posterior mean of heritability of liability to culling of primiparous cows was 0.04. The posterior means of the genetic correlations between culling and the other traits were −0.41 to 305-d protein yield, 0.20 to lactation mean SCS, 0.36 to clinical mastitis, 0.15 to interval from calving to first insemination, −0.11 to 56-d nonreturn as heifer, and −0.04 to 56-d nonreturn as primiparous cow. As much as 66% of the genetic variation in culling was explained by genetic variation in protein yield, clinical mastitis, interval of calving to first insemination, and 56-d nonreturn in heifers, whereas contribution from the SCS and 56-d nonreturn as primiparous cow was negligible, after taking the other traits into account. This implies that for breeds selected for a broad breeding goal, including functional traits such as health and fertility, most of the genetic variation in culling will probably be covered by other traits in the breeding goal. However, in populations where data on health and fertility is scarce or not available at all, selection against early culling may be useful in indirect selection for improved health and fertility. Regression of average sire posterior mean on birth-year of the sire indicate a genetic change equivalent to an annual decrease of the probability of culling in first-lactation Norwegian Red cattle by 0.2 percentage units. This genetic improvement is most likely a result of simultaneous selection for improved milk yield, health, and fertility over the last decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号