首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Lactating dairy cows (n = 1,025) on a commercial dairy farm were randomly assigned at 10 ± 3 d in milk (DIM) to 1 of 3 treatments for submitting cows to first artificial insemination (AI) and were fitted with activity-monitoring tags (Heatime; SCR Engineers Ltd., Netanya, Israel) at 24 ± 3 DIM. Cows (n = 339) in treatment 1 were inseminated based on increased activity from the end of the voluntary waiting period (50 DIM) until submission to an Ovsynch protocol; cows without increased activity from 21 to 65 DIM began an Ovsynch protocol at 65 ± 3 DIM, whereas cows without increased activity from 21 to 50 DIM but not from 51 to 79 DIM began an Ovsynch protocol at 79 ± 3 DIM. Cows (n = 340) in treatment 2 were inseminated based on activity after the second PGF injection of a Presynch-Ovsynch protocol at 50 DIM, and cows without increased activity began an Ovsynch protocol at 65 ± 3 DIM. Cows (n = 346) in treatment 3 were monitored for activity after the second PGF injection of a Presynch-Ovsynch protocol, but all cows received timed AI (TAI) at 75 ± 3 DIM after completing the Presynch-Ovsynch protocol. The activity-monitoring system detected increased activity in 56, 69, and 70% of cows in treatments 1, 2, and 3, respectively. Treatment-2 cows had the fewest average days to first AI (62.5), treatment-3 cows had the most average days to first AI (74.9), and treatment-1 cows had intermediate average days to first AI (67.4). Treatment-1 and -2 cows in which inseminations occurred as a combination between increased activity and TAI had fewer overall pregnancies per AI (P/AI) 35 d after AI (32% for both treatments) compared with treatment-3 cows, all of which received TAI after completing the Presynch-Ovsynch protocol (40%). Based on survival analysis, although the rate at which cows were inseminated differed among treatments, treatment did not affect the proportion of cows pregnant by 300 DIM. Thus, use of an activity-monitoring system to inseminate cows based on activity reduced days to first AI, whereas cows receiving 100% TAI after completing a Presynch-Ovsynch protocol had more P/AI. The trade-off between AI service rate and P/AI in the rate at which cows became pregnant was supported by an economic analysis in which the net present value ($/cow per year) differed by only $4 to $8 among treatments. We conclude that a variety of strategies using a combination of AI based on increased activity using an activity-monitoring system and synchronization of ovulation and TAI can be used to submit cows for first AI.  相似文献   

2.
Two experiments were conducted to evaluate an accelerometer system (Heatime; SCR Engineers Ltd., Netanya, Israel) to manage reproduction in lactating dairy cows. In experiment 1, lactating Holstein cows (n = 112) were fitted with an accelerometer system and were treated with GnRH followed 7 d later by PGF to synchronize estrus. A total of 89 cows that had a follicle >10 mm in diameter and a functional corpus luteum at the PGF injection that regressed by 48 h after induction of luteolysis were included in the analysis. Overall, 71% of cows were detected in estrus by the accelerometer system and 95% of cows showing estrus ovulated within 7 d after induction of luteolysis. Of the cows not detected in estrus by the accelerometer system, 35% ovulated within 7 d after induction of luteolysis. Duration of estrus activity (mean ± SD) was 16.1 ± 4.7 h and was neither affected by parity nor milk production. Intervals (means ± SD) from induction of luteolysis, onset of activity, peak raw activity, and peak weighted activity to ovulation was 82.2 ± 9.5, 28.7 ± 8.1, 20.4 ± 7.8, and 16.4 ± 7.4 h, respectively, and the interval from AI to ovulation was 7.9 ± 8.7 h, but ranged from −12 to 26 h. In experiment 2, cows were assigned randomly to receive an intramuscular injection of GnRH at artificial insemination (AI) after detection of estrus by the accelerometer system or receive no treatment (control). Nine hundred seventy-nine AI services from 461 cows were analyzed. Treatment with GnRH at AI did not affect fertility at 35 or 65 d after AI, and no interaction was detected between treatment and season or treatment and AI number. Overall, two-thirds of the cows that were considered properly synchronized were inseminated based on the accelerometer system and ovulated after AI. The remaining cows either were not inseminated because they were not detected in estrus or would not have had a chance to conceive to AI because they failed to ovulate after estrus. Furthermore, mean time of AI in relation to ovulation determined by the accelerometer system was acceptable for most of the cows that displayed estrus; however, variability in the duration of estrus and timing of AI in relation to ovulation could lead to poor fertility in some cows. For lactating dairy cows detected in estrus by the accelerometer system, treatment with GnRH at the time of AI without reference to the onset of estrus did not increase fertility.  相似文献   

3.
The objective was to determine if reducing the interval from presynchronization to the first GnRH injection (G1) of a timed artificial insemination (AI) protocol improves pregnancy per AI. One thousand two hundred fourteen Holstein cows, at 37 ± 3 d in milk (DIM), were stratified by parity, DIM, and milk yield in the first month postpartum and randomly assigned to control (n = 412), 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, then enrolled in a timed AI protocol 14 d later; PShort (n = 410), 2 injections of PGF2α at 40 ± 3 and 54 ± 3 DIM, then enrolled in a timed AI protocol 11 d later; or PShortG (n = 392), same as PShort, but with an injection of GnRH 7 d before G1. All cows received the same timed AI protocol (d 65, G1; d 72, PGF2α; d 73, 1 mg of estradiol cypionate; d 75, AI). A subset of 1,000 cows had their ovaries examined by ultrasonography at G1 and 7 d later when PGF2α of the timed AI was given to determine presence of corpus luteum (CL) and ovulation to G1. Pregnancy was diagnosed on d 38 after timed AI, and pregnant cows were reevaluated for pregnancy 4 wk later. Altering the interval between presynchronization and G1 did not affect the proportion of cows with a CL at G1, but GnRH 7 d before G1 increased the proportion of cows with a CL. Ovulation to G1 was greater for 11 compared with the 14 d interval, but GnRH did not improve ovulation. The increased ovulation to G1 when the interval was reduced from 14 to 11 d was observed only in cows with a CL at G1, but treatment did not affect ovulation in cows without a CL at G1. Treatment affected the pregnancy per AI on d 38 and 66 after insemination, and they were greater for the 11 compared with 14-d interval, but addition of GnRH did not improve pregnancy per AI. Cows ovulating to G1 had greater pregnancy per AI regardless of whether or not they had a CL at G1. Reducing the interval from presynchronization to initiation of the timed AI protocol from 14 to 11 d increased ovulation to G1 and pregnancy per AI in lactating dairy cows.  相似文献   

4.
Our objectives were to compare reproductive responses of dairy cows receiving timed artificial insemination (AI) either at 48 or 72 h after induction of luteolysis and supplemented or not with estradiol cypionate (ECP). Holstein cows (971) had their estrous cycles presynchronized with injections of PGF at 37 and 51 d in milk (DIM) and then received an injection of GnRH at 64 DIM and an injection of PGF at 71 DIM. Cows were then assigned to a 2 × 2 factorial randomized block experiment; cows in the CoSynch 48 h (CoS48) received a final injection of GnRH concurrent with timed AI 48 h after PGF, whereas cows in the CoSynch 72 h (CoS72) received GnRH and timed AI 72 h after PGF. Half of the cows in each CoSynch protocol received an injection of 1 mg of ECP 24 h after PGF. Therefore, the 4 treatments were as follows: CoS48-NECP (n = 240), CoS72-NECP (n = 246), CoS48-ECP (n = 245), and CoS72-ECP (n = 240). Blood was sampled at 7 d before and at the first GnRH of the CoSynch from all cows for analysis of progesterone concentration in plasma. Cows were classified as anovular when progesterone was less than 1.0 ng/mL in both samples. Blood was also sampled during proestrus from a subset of 123 cows to measure concentrations of estradiol and at 7 d after timed AI to measure concentrations of progesterone. Ovaries from the same subset of 123 cows were examined by ultrasonography to determine ovulatory follicle diameter and incidence of ovulation. Pregnancy was diagnosed at 40 and 68 d after AI. Prevalence of cyclic cows was 72.4% and was similar among treatments. Concentrations of estradiol increased after ECP treatment and at 72 h of proestrus with CoS72. Pregnancy at 40 and 68 d after AI and pregnancy loss were not affected by timing of AI or supplemental ECP. Delaying timed AI to 72 h and supplementation with ECP increased the proportion of cows displaying estrus at AI, and cows detected in estrus had increased pregnancy per AI associated with improved ovulation and increased postovulatory progesterone concentration. These results indicate that extending the proestrus by delaying timed AI from 48 to 72 h plus supplemental ECP, despite increased expression of estrus at timed AI, did not improve reproductive performance of lactating dairy cows at first AI.  相似文献   

5.
An important part of reproductive management programs on dairy farms is identification of nonpregnant cows and early re-insemination to achieve higher pregnancy rates. The objective of this study was to compare the effect on reproductive performance and pregnancy loss of 2 pregnancy diagnosis protocols: (1) pregnancy diagnosis performed 31 ± 3 d after artificial insemination (AI) by ultrasonography (ULTRA), and (2) resynchronization started 31 ± 3 d after AI but with pregnancy diagnosis performed 38 ± 3 d after AI by palpation per rectum (PALP). Cows were randomly allocated into 1 of the 2 management programs. For cows enrolled in ULTRA, the initial pregnancy diagnosis (P1) was performed by transrectal ultrasonography at 31 ± 3 d after AI, and nonpregnant cows were enrolled in the Ovsynch protocol for resynchronization of ovulation to receive timed AI (TAI). For cows enrolled in PALP, the Ovsynch protocol for resynchronization of ovulation to receive TAI was initiated at 31 ± 3 d after AI regardless of pregnancy status, with the initial pregnancy diagnosis (P1) performed by palpation per rectum at 38 ± 3 d after AI. For both groups, reconfirmation of pregnancy was performed by palpation per rectum at 63 ± 3 d after AI (P2). Cows were inseminated after detection of estrus by use of activity monitors at any time during the study. Two levels of activity were used as a reference for cows AI after detection of estrus based on activity: an activity level of ≥2 when a cow was coded in DairyComp 305 (Valley Agricultural Software, Tulare, CA) as open (nonpregnant) and an activity level of ≥3 when the pregnancy status of the cow was unknown. Our findings showed that the odds of pregnancy loss cows in ULTRA was 2 times higher between P1 and P2 compared with that of cows in PALP. Furthermore, pregnancy diagnosis method (ULTRA vs. PALP) did not have a significant effect on the Cox proportional hazard of pregnancy at P2. The occurrence of assisted parturition, metritis, or retained placenta was associated with a reduced hazard of pregnancy at P2. An economic analysis was performed by simulating a 1,000-cow commercial dairy herd using a decision support tool to estimate the net present value (NPV; $/cow per yr) from using the 2 different pregnancy diagnosis methods. The analysis revealed minor differences in NPV between the programs, depending on the cost to perform ULTRA or PALP. In summary, we observed no difference in the reproductive performance and only a minor and fluctuating economic difference when using either PALP or ULTRA for pregnancy diagnosis of dairy cows.  相似文献   

6.
The objective of this study was to compare 2 strategies for resynchronization of ovulation based on nonpregnant diagnoses using transrectal ultrasonography or a pregnancy-associated glycoprotein (PAG) ELISA. Lactating Holstein cows (n = 1,038) were submitted for first postpartum timed artificial insemination (TAI) using a Presynch + Ovsynch protocol. After the initial breeding, cows were randomly assigned to initiate resynchronization 25 d (D25) or 32 d (D32) later. Pregnancy status of cows initiating Resynch 25 d after TAI was determined 27 d after TAI by using a PAG ELISA, whereas pregnancy status of cows initiating Resynch 32 d after TAI was determined 39 d after TAI using transrectal ultrasonography. Cows diagnosed as not pregnant continued the Resynch protocol by receiving an injection of PGF 7 d after the initial GnRH injection and a second GnRH injection 54 h after the PGF injection. Cows in both treatments were inseminated approximately 16 h after the second GnRH injection. Blood samples for analysis of progesterone (P4) were collected at the first GnRH injection of each Resynch protocol. Pregnancies per AI (P/AI) of nonpregnant cows initiating Resynch 25 vs. 32 d after first postpartum TAI did not differ 39 d after TAI and were 28.3 vs. 30.9% for D25 vs. D32 cows, respectively. Mean P4 at the first GnRH injection of Resynch was greater for D32 than for D25 cows (3.67 ± 0.22 vs. 2.83 ± 0.22 ng/mL), indicating that the Resynch treatments were initiated at different stages of the estrous cycle. After blocking P4 concentration into low (<1.0 ng/mL) or high (≥1.0 ng/mL) classes, P4 class was not found to affect P/AI 39 d after TAI. Early resynchronization was not found to affect P/AI 39 d after TAI; however, early resynchronization did decrease days between inseminations and the interval from the initial nonpregnant diagnosis to conception. Earlier detection of nonpregnant cows using the PAG ELISA in conjunction with a TAI resynchronization program may improve the rate at which cows become pregnant in a dairy herd compared with transrectal ultrasonography conducted at a later stage after TAI.  相似文献   

7.
The Ovsynch protocol was designed to synchronize ovulation, thereby allowing timed artificial insemination (TAI) of all cows without detection of estrus. However, the effectiveness of Ovsynch in different breeds of dairy cows has not been previously compared. The aim of this study was to compare the response to Ovsynch in cycling lactating Holstein-Friesian (HF) and Swedish Red (SR) dairy cows. A total of 495 cyclic cows (n = 347 HF, n = 148 SR) were housed together and treated with Ovsynch (GnRH - 7 d - PGF - 56 h - GnRH - 16 to 18 h - TAI). Ovulatory responses, synchronization rate, maximal follicle size at the time of AI, and percentage of pregnant cows per AI (P/AI at 31 and 62 d after AI) were compared between breeds. Ultrasonography was performed during Ovsynch at first GnRH, PGF, at time of AI, and 7 d after AI. Ovulatory response and synchronization rate were similar in HF versus SR cows (60.2 vs. 62.2%; 88.4 vs. 88.5%, respectively). Cows that ovulated to the first GnRH of Ovsynch had smaller follicle size at AI (15.9 ± 0.1 vs. 16.4 ± 0.2 mm). Maximal follicle size at AI was greater for HF (16.4 ± 2.2 mm) than SR (15.5 ± 2.3 mm) cows. The P/AI was greater for SR than HF cows at the 62-d pregnancy diagnosis (56.1 vs. 46.1%). In addition, pregnancy loss between 31 and 62 d of pregnancy was greater in HF (10.1%) than SR (3.5%) cows. Fertility was less in HF cows during the hot season (57.7 in cold vs. 38.1% in the hot season), whereas such a decrease was not observed in SR (60.0 in cold vs. 53.5% in the hot season) cows. Thus, although the GnRH treatments of Ovsynch were equally effective in SR and HF cows, pregnancy outcomes (P/AI at d 62 and pregnancy survival) were greater in SR than HF cows, and P/AI in SR cows was not compromised during the hot season as was found for HF cows.  相似文献   

8.
Our objective was to determine the effect of exogenous progesterone (P4) during a timed artificial insemination (TAI) protocol on pregnancies per AI (P/AI) in dairy cows not previously detected in estrus. Lactating cows (n = 3,248) from 7 commercial dairy herds were submitted to a presynchronization protocol (2 injections of PGF 14 d apart; Presynch), and cows in estrus after the second PGF received AI (EDAI; n = 1,583). Cows not inseminated by 12 to 14 d after the second PGF injection were submitted to a TAI protocol (GnRH on d 0, PGF on d 7, and GnRH + TAI 72 h after PGF). At onset of the TAI protocol, cows were balanced by parity and days in milk and assigned randomly to receive no exogenous P4 (control, n = 803) or a controlled internal drug release (CIDR) insert containing 1.38 g of P4 from d 0 to 7 (CIDR, n = 862). Blood samples were collected at the second PGF injection of the Presynch and on the day of the first GnRH injection of the TAI protocol for P4 determination. When P4 in both samples was <1 ng/mL, cows were classified as anovular, whereas cows having at least 1 sample ≥1 ng/mL were classified as cyclic. Concentration of P4 at 11 to 14 d after AI was determined in a subgroup of cows (n = 453) from 2 herds. Pregnancy was diagnosed at 40 ± 5 and 65 ± 5 d after AI. Proportion of cows inseminated on estrus after the second PGF injection of the Presynch protocol differed among herds (range = 26.7 to 59.8%). Overall P/AI for EDAI cows at 40 ± 5 and 65 ± 5 d were 36.2 and 33.7%, respectively, and pregnancy loss was 8.8%. Proportion of cyclic cows at the onset of the TAI protocol differed among herds (range from 66.5 to 86.3%), but did not differ between treatments (control = 72.4%, CIDR = 74.1%). Treatment affected P/AI at 40 ± 5 (control = 33.3%, CIDR = 38.1%) and 65 ± 5 (control = 30.0%, CIDR = 35.1%) d after AI but did not affect pregnancy loss (8.6%). Cyclic cows had greater P/AI at 40 ± 5 (38.2 vs. 29.3%) and 65 ± 5 d (35.1 vs. 26.1%) after AI, but cyclic status had no effect on pregnancy loss. Treatment affected P4 concentration after AI, with more CIDR cows having P4 ≥1 ng/mL (94.4 vs. 86.9%) and P4 ≥3.2 ng/mL (81.8 vs. 68.0%) at 11 to 14 d after AI compared with control cows. Treatment of cows not previously detected in estrus with a CIDR insert during a TAI protocol increased proportion of cows with functional CL after AI and P/AI.  相似文献   

9.
The aim of this study was to compare the reproductive performance of dairy cows subjected to early (ER) or late (LR) resynchronization programs after nonpregnancy diagnoses based on either pregnancy-associated glycoproteins (PAG) ELISA or transrectal palpation, respectively. In addition, the accuracy of the PAG ELISA for early pregnancy diagnosis was assessed. Lactating Holstein cows were subjected to a Presynch-Ovsynch protocol with timed artificial insemination (AI) performed between 61 and 74 DIM. On the day of the first postpartum AI, 1,093 cows were blocked by parity and assigned randomly to treatments; however, because of attrition, 452 ER and 520 LR cows were considered for the statistical analyses. After the first postpartum AI, cows were observed daily for signs of estrus and inseminated on the same day of detected estrus. Cows from ER that were not reinseminated in estrus received the first GnRH injection of the Ovsynch protocol for resynchronization 2 d before pregnancy diagnosis. On d 28 after the previous AI (d 27 to 34), pregnancy status was determined by PAG ELISA, and nonpregnant cows continued on the Ovsynch protocol for reinsemination. Pregnant cows had pregnancy status reconfirmed on d 46 after AI (d 35 to 52) by transrectal palpation, and those that lost the pregnancies were resynchronized. Cows assigned to LR had pregnancy diagnosed by transrectal palpation on d 46 after AI (d 35 to 52) and nonpregnant cows were resynchronized with the Ovsynch protocol. Blood was sampled on d 28 after AI (d 27 to 34) from cows in both treatments that had not been reinseminated on estrus and again on d 46 after AI (d 35 to 52) for assessment of PAG ELISA to determine the accuracy of the test. Cows were subjected to treatments for 72 d after the first insemination. Pregnancy per AI (P/AI) at first postpartum timed AI did not differ between treatments and averaged 28.9%. The proportion of nonpregnant cows that were resynchronized and received timed AI was greater for ER than for LR (30.0 vs. 7.6%). Cows in ER had a shorter interval between inseminations when inseminated following spontaneous estrus (21.7 ± 1.1 vs. 27.8 ± 0.8 d) or after timed AI (35.3 ± 1.2 vs. 55.2 ± 1.4 d). Nevertheless, the ER did not affect the rate of pregnancy (adjusted hazard ratio = 1.23; 95% confidence interval = 0.94 to 1.61) or the median days postpartum to pregnancy (ER = 132 vs. LR = 140). A total of 2,129 PAG ELISA were evaluated. Overall, sensitivity, specificity, and positive and negative predictive values averaged 95.1, 89.0, 90.1, and 94.5%, respectively, and the accuracy was 92.1%. In conclusion, PAG ELISA for early diagnosis of pregnancy had acceptable accuracy, but early resynchronization after nonpregnancy diagnosis with PAG ELISA did not improve the rate of pregnancy or reduce days open in dairy cows continuously observed for estrus.  相似文献   

10.
The objectives of this study were to evaluate the effect of administering 500 mg of recombinant bovine somatotropin (bST) every 10 d on ovulatory responses, estrous behavior, and fertility of lactating Holstein cows. Lactating dairy cows were assigned to 1 of 2 treatments: a control with no administration of bST (73 primiparous and 120 multiparous cows) or 6 consecutive administrations of 500 mg of bST (83 primiparous and 123 multiparous cows) given subcutaneously at 10-d intervals starting 61 ± 3 d postpartum (study d 0), concurrent with the initiation of the timed artificial insemination (AI). Blood samples were collected thrice weekly from 61 ± 3 to 124 ± 3 d in milk (DIM), and plasma samples were analyzed for concentrations of estradiol, glucose, insulin, insulin-like growth factor 1, and progesterone. The estrous cycle of cows was presynchronized with 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, and the Ovsynch timed AI protocol was initiated at 61 ± 3 DIM. Ovaries were scanned to determine ovulatory responses during the Ovsynch protocol. Pregnancy was diagnosed at 33 and 66 d after AI. Body condition was scored on study d 0, 10, 42, and 76. Sixty-four cows were fitted with a pressure mounting sensor with radiotelemetric transmitters to monitor estrous behavior. Treatment of lactating dairy cows with 500 mg of bST at 10-d intervals increased yields of milk and milk components in the first 2 mo after treatment. Body condition of bST-treated cows remained unaltered, whereas control cows gained BCS. Treatment with bST increased concentrations of insulin-like growth factor 1 chronically, but concentrations of insulin and glucose increased only transiently in the first 7 d after the first injection of bST. Concentrations of progesterone during and after the Ovsynch protocol remained unaltered after treatment with bST; likewise, ovulatory responses during the Ovsynch protocol were mostly unaltered by treatment. Concentration of estradiol tended to be greater for bST cows than for control cows immediately before induction of ovulation in the Ovsynch protocol. Similarly, the mean and the peak concentrations of estradiol were greater for bST cows than for control cows when monitored during spontaneous estrus. Nevertheless, duration of estrus and the median number of standing events were less for bST cows than for control cows. Pregnancies per AI after the first and second postpartum inseminations were not affected by bST treatment. Treatment of lactating dairy cows with 500 mg of bST every 10 d improved lactation performance, but it did not affect pregnancies per AI and it reduced expression of estrus.  相似文献   

11.
The objectives of this study were to evaluate the effects of an intravaginal insert containing progesterone (CIDR, controlled internal drug releasing) administered in presynchronization and resynchronization protocols on cyclicity, detection of estrus, pregnancy rate, and pregnancy loss to first AI; reinsemination patterns; and pregnancy rates to second postpartum AI before and after the time of first-service pregnancy diagnosis in dairy cows. Holstein cows (n = 1,052) were blocked by parity and BCS at 3 ± 3 d in milk (study d 0 = day of calving) and assigned randomly to 1 of 3 presynchronization treatments. During the presynchronization programs, all cows received 2 injections of PGF2α, on study d 35 and 49. Cows enrolled in the control presynchronization treatment received AI after detected estrus from study d 49 to 62. Cows enrolled in the CIDR estrus-detection (CED) presynchronization treatment received a CIDR insert from study d 42 to 49 and AI on detection of estrus from d 49 to 62. Cows enrolled in the CIDR timed AI (CTAI) presynchronization treatment received the same treatment as CED, but were subjected to timed AI on study d 72 after the Ovsynch (GnRH, 7 d PGF2α, 2 d GnRH, 24 h timed AI) protocol. The control and CED cows not inseminated by study d 62 were enrolled in the Ovsynch protocol on the same day and received timed AI on study d 72. After first AI, cows were assigned to no resynchronization (RCON) or resynchronization with a CIDR insert (RCIDR) between 14 and 21 d after AI. Blood samples collected on study d 35, 49, and 62 were analyzed for concentrations of progesterone and cows were classified as anestrous when progesterone was <1.0 ng/mL in the first 2 samples. On study d 62, anestrous cows with progesterone ≥ 1.0 ng/mL were classified as having resumed cyclicity. Pregnancy was diagnosed at 31 and 60 d after first AI and at 42 d after second AI. A greater proportion of anestrous cows in CED and CTAI became cyclic by d 62 postpartum than control cows. Resynchronization with the CIDR insert increased the pregnancy rate at 31 d after first AI in CED and CTAI, and at 60 d after AI in all cows because of reduced pregnancy loss. These results indicate that presynchronization with the CIDR insert increased induction of cyclicity in anestrous cows and that resynchronization with the CIDR insert did not affect the reinsemination rate but did reduce pregnancy loss and increased the pregnancy rate at 60 d after first AI.  相似文献   

12.
Objectives were to evaluate the effects of inseminating cows observed in estrus following a PGF-based presynchronization protocol on reproductive and lactation performance. Weekly, Holstein cows (260 primiparous and 379 multiparous) were balanced by parity, body condition score at 3 d in milk (DIM), and previous lactation milk yield (multiparous cows) and assigned randomly to either of 2 reproductive programs. All cows received 2 injections of PGF at 35 and 49 DIM and a controlled internal drug release insert containing progesterone from 42 to 49 DIM. Cows assigned to the short voluntary waiting period (SVWP) treatment were inseminated if observed in estrus after the second injection of PGF of the presynchronization protocol, and those not inseminated were submitted to a timed artificial insemination (TAI) protocol (GnRH 62 DIM, PGF 69 DIM, GnRH 71 DIM, and TAI 72 DIM), whereas cows assigned to the long voluntary waiting period (LVWP) were all submitted to the TAI protocol and were TAI at 72 DIM. Plasma progesterone was determined at 35, 49, and 62 DIM for evaluation of interval from parturition to resumption of cyclicity. Pregnancy was diagnosed weekly at 32 and 60 d after first AI and at 42 d after subsequent inseminations. Percentage of SVWP cows inseminated in estrus was 58.9% and the interval from parturition to first AI was shorter for SVWP cows (64.7 ± 0.4 vs. 74.2 ± 0.5 DIM). Cows cyclic by 49 and 62 DIM were more likely to be inseminated in estrus than those anovular by 62 DIM (67.9, 61.0, and 32.8%, respectively) and cyclic cows by 49 and 62 DIM had shorter interval from parturition to first AI than anovular cows (62.6 ± 0.7, 63.1 ± 1.2, and 70.1 ± 1.1 DIM). Treatment did not affect pregnancy per AI after first postpartum AI or the rate at which cows became pregnant. Cows that resumed cyclicity by 49 DIM had greater pregnancy per AI than cows still anovular by 62 DIM and became pregnant at a faster rate than cows that resumed cyclicity by 62 DIM and those still anovular by 62 DIM. Inseminating cows that displayed estrus after the presynchronization protocol did not affect reproductive performance compared with submission of 100% of cows to a TAI protocol.  相似文献   

13.
The objective of this study was to compare conception rates of cows exhibiting spontaneous estrus and receiving artificial insemination (AI) before completion of a timed AI protocol with cows that did not display estrus spontaneously, but were inseminated after 1 of 3 GnRH-PGF2α protocols. Cows (n = 432) in 2 herds were administered GnRH on d -7 and were tail-chalked daily. Cows detected in estrus before d 0 were inseminated immediately. Cows not detected in estrus by d 0 were administered PGF2α and were tail-chalked daily until 48 h after PGF2α. Cows detected in estrus from d −7 to 48 h after PGF2α were inseminated and designated as treatment A (n = 46). Cows not detected in estrus and not inseminated by 48 h after PGF2α were assigned randomly to receive either GnRH 48 h after PGF2α and timed AI 16 h later (treatment B; n = 132), or GnRH and timed AI 64 h after PGF2α (treatment C; n = 127), or timed AI 64 h after PGF2α (treatment D; n = 127). Pregnancy was diagnosed 38 to 45 d after AI by palpation per rectum of uterine contents. Nearly 11% of all cattle exhibited spontaneous estrus and received immediate AI. Herd did not influence the percentage of cows detected in estrus and inseminated. Conception rates did not differ among treatments. Conception rates differed between herds, but no interaction of herd × treatment was detected. No differences were detected between herds for days in milk, milk production, AI service number, or parity.  相似文献   

14.
The objectives of the current study were to investigate the efficacy of PGF as a therapy to reduce the prevalence of subclinical endometritis and improve pregnancy per artificial insemination (P/AI) in cows subjected to a timed artificial insemination (AI) program. A total of 1,342 lactating Holstein dairy cows were allocated randomly at 25 ± 3 d in milk (DIM) to remain as untreated controls (control, n = 454) or to receive a single PGF treatment at 39 ± 3 DIM (1PGF, n = 474) or 2 treatments with PGF at 25 ± 3 and 39 ± 3 DIM (2PGF, n = 414). All cows were enrolled in the double Ovsynch program at 48 ± 3 DIM and were inseminated at 75 ± 3 DIM. A subset of 357 cows had uterine samples collected for cytological examination at 25 ± 3, 32 ± 3, and 46 ± 3 DIM to determine the percentage of polymorphonuclear leukocytes (PMNL). Subclinical endometritis was defined by the presence of ≥5% PMNL. Vaginal discharge score was evaluated at 25 ± 3 DIM and used to define the prevalence of purulent vaginal discharge. Body condition score was assessed at 25 ± 3 DIM. Pregnancy was diagnosed 32 d after AI and reconfirmed 28 d later. At 32 ± 3 DIM, the prevalence of subclinical endometritis was reduced by treatment with PGF at 25 ± 3 DIM in 2PGF (control = 23.5% vs. 1PGF = 28.3% vs. 2PGF = 16.7%); however, this benefit disappeared at 46 ± 3 DIM, and 14% of the cows remained with subclinical endometritis. One or 2 treatments with PGF did not influence P/AI on d 32 or 60 after timed AI, which averaged 39.9 and 35.2%. Similarly, treatment with PGF had no effect on pregnancy loss between 32 and 60 d of gestation (11.9%). Cows diagnosed with both purulent vaginal discharge and subclinical endometritis had the lowest P/AI and the highest pregnancy loss compared with those diagnosed with only 1 of the 2 diseases or compared with cows having no diagnosis of uterine diseases. Interestingly, subclinical endometritis depressed P/AI and increased pregnancy loss only when it persisted until 46 DIM. On d 32 after AI, cows not diagnosed with subclinical endometritis and those that resolved subclinical endometritis by 46 DIM had greater P/AI than those that remained with subclinical endometritis at 46 DIM (45.4 and 40.0 vs. 25.0%, respectively). Similar to P/AI, cows not diagnosed with subclinical endometritis and those that resolved subclinical endometritis by 46 DIM had less pregnancy loss than those with subclinical endometritis at 46 DIM (9.6 and 13.5 vs. 43.9%, respectively). One or 2 treatments with PGF before initiation of the timed AI program were unable to improve uterine health, P/AI, and maintenance of pregnancy in lactating dairy cows. Cows diagnosed with both purulent vaginal discharge and subclinical endometritis had the greatest depressions in measures of fertility at first AI, particularly when subclinical endometritis persisted in the early postpartum period.  相似文献   

15.
Our objective was to evaluate factors associated with spontaneous multiple ovulations in lactating dairy cows. Ovaries of cows [n = 267; >50 days in milk (DIM)] were evaluated weekly using ultrasound to determine spontaneous (i.e., no hormonal treatment) ovulation rate starting at 50 DIM and continuing until pregnancy diagnosis. Cows were fitted with a transmitter to record standing activity during estrus, and serum progesterone concentration was assessed weekly starting at wk 1 postpartum for all cows. Overall, 76 (28.5%) cows were anovular and 191 (71.5%) were ovular by 71 DIM. Incidence of anovulation was not associated with level of milk production but was associated with lower body condition. For anovular cows (n = 41) that spontaneously recovered, the multiple ovulation rate at first ovulation was 46.3%. For second and subsequent ovulations (n = 463), the level of milk production for 14 d preceding estrus was associated with increased ovulation rate. To illustrate, incidence of multiple ovulations was 1.6% (2/128), 16.9% (32/189), and 47.9% (70/146) for ovulations when cows were producing <35, 35 to <45, and ≥45 kg/d, respectively. Among cows for which estrous behavior was recorded, those with multiple ovulations (n = 48) had shorter duration of estrus (4.3 ± 0.7 vs. 9.9 ± 0.5 h) and higher production (47.2 ± 0.9 vs. 38.1 ± 0.5 kg/d) than cows with single ovulations (n = 237). Circulating concentrations of estradiol were lower (5.5 ± 0.3; n = 15 vs. 7.8 ± 0.4 pg/mL; n = 71) during periods of estrus with multiple ovulations despite a greater preovulatory follicular volume (4136 ± 123 vs. 3085 ± 110 mm3). Similarly, serum progesterone concentration 7 d after estrus was lower for cows with multiple than single ovulations (2.5 ± 0.3 vs. 3.2 ± 0.1 ng/mL) despite a greater luteal volume (8291 ± 516 vs. 6405 ± 158 mm3). In summary, the first spontaneous ovulation in anovular cows and a higher level of milk production for 14 d preceding estrus were associated with increased multiple ovulation rate. Additionally, cows with multiple ovulations had lower estradiol at estrus, a shorter duration of estrus, and lower progesterone at 7 d after estrus than cows with single ovulations.  相似文献   

16.
An adequate and clean artificial insemination (AI) technique is recommended to improve reproductive outcomes in dairy cattle. The objective of this study was to evaluate the effectiveness of using protective plastic sheaths (PS) to minimize contamination of the AI catheter (AIC) on pregnancies per AI (PAI) in lactating dairy cattle. Lactating cows housed in freestall barns on a commercial dairy farm were presynchronized with 2 injections of PGF given 14 d apart (starting at 26 ± 3 d postpartum) followed by Ovsynch (GnRH-7 d-PGF-56 h-GnRH-16 h-timed-AI; TAI) 12 d later. Cows presenting signs of standing heat any time during the protocol received AI, whereas the remaining animals were subjected to TAI 16 h after second Ovsynch GnRH. At the time of AI (1 AI technician), 996 services from 773 lactating dairy cows were randomly assigned to 1 of the 2 groups; with (TRT, n = 487) or without (CON, n = 509) the use of disposable PS. In the TRT group, the AIC protected with a PS was introduced into the vagina; once in the cranial portion of the vagina adjacent to the cervical os, the PS was pulled back and only the AIC was manipulated through the cervix into the uterine body for semen deposition. In the CON group, cows were inseminated without the use of PS. Samples were taken with a sterile cotton swab from the tip of the AIC (n = 51) after AI from both treatment groups. Pregnancy diagnosis was determined by ultrasonography 39 ± 3 d after AI. Cultured swab samples revealed that the use of PS was effective in minimizing contamination of the AIC (positive bacterial growth: TRT = 61.53% vs. CON = 100%). Overall, the proportion of cows pregnant was greater for cows in TRT (42.7) compared with the CON group (36.1). For first services postpartum, PAI did not differ between CON (43.01%, n = 194) and TRT (43.8%, n = 182) groups. However, PAI for second or greater services were greater in TRT (43.8%, n = 305) than in CON cows (32.3%, n = 315). Results from this study provided evidence that the use of PS during AI improved PAI for second or greater services in lactating dairy cows. Performing a clean AI technique through the use of PS may be an effective strategy to improve reproductive outcomes in dairy cattle.  相似文献   

17.
The objective was to determine the effect of exogenous progesterone (P4) in a timed artificial insemination (TAI) protocol initiated at 2 different times post-AI on pregnancies per AI (P/AI) in lactating dairy cows. Cows (n = 1,982) in 5 dairy herds were assigned randomly at a nonpregnancy diagnosis 32 ± 3 d post-AI to 1 of 4 resynchronization (RES) treatments arranged in a 2 × 2 factorial design using the Ovsynch-56 (GnRH, 7 d later PGF, 56 h later GnRH, 16 h later TAI) protocol. Treatments were as follows: cows initiating RES 32 ± 3 d after AI with no supplemental P4 (d 32 RES-CON; n = 516); same as d 32 RES-CON plus a controlled internal drug release (CIDR) insert containing P4 at the onset of Ovsynch-56 (d 32 RES-CIDR; n = 503); cows initiating RES 39 ± 3 d after AI (d 39 RES-CON; n = 494); and same as d 39 RES-CON plus a CIDR (d 39 RES-CIDR; n = 491). Cows were inseminated if observed in estrus before TAI. The P/AI was determined 32 and 60 d after TAI. In a subgroup of cows (n = 1,152), blood samples were collected and ovarian structures examined by ultrasonography on the days of the first GnRH (G1) and PGF of Ovsynch-56. Percentage of cows with a corpus luteum (CL) at G1 was unaffected by timing of treatments, but percentage of cows with a CL at PGF was greater for d 32 than for d 39 cows (87.9 vs. 79.4%). In addition, percentage of cows with P4 ≥1 ng/mL at G1 was unaffected by timing of treatments, but was increased for d 32 compared with d 39 RES cows on the day of the PGF of the RES protocols (86.5 vs. 74.3%). Treatment did not affect ovulation to G1 or P/AI 32 d after RES TAI (d 32 RES-CON = 30.1%, d 32 RES-CIDR = 28.8%, d 39 RES-CON = 27.5%, d 39 RES-CIDR = 30.5%). A greater percentage of d 39 RES cows underwent premature luteolysis during the RES protocol compared with d 32 RES cows. An interaction was detected between day of RES initiation and CIDR treatment, in which the CIDR increased P/AI 60 d after TAI for d 39 (CON = 23.7% vs. CIDR = 28.0%), but not for d 32 (CON = 26.9% and CIDR = 24.2%) cows. Pregnancy loss was unaffected by treatment. In addition, cows had improved P/AI 60 d after TAI when they received a CIDR and did not have a CL (CON-CL = 28.2%, CON-No CL = 19.2%, CIDR-CL = 27.0%, and CIDR-No CL = 26.5%) or had P4 <1 ng/mL (CON-High P4 = 27.8%, CON-Low P4 = 15.0%, CIDR-High P4 = 25.0%, and CIDR-Low P4 = 29.4%) at G1, but not if a CL was present or P4 was ≥1 ng/mL at G1. In conclusion, addition of a CIDR insert to supplement P4 during the RES protocol increased P/AI for cows initiating RES 39 ± 3 d after AI but not 32 ± 3 d after AI.  相似文献   

18.
Lactating Holstein cows (located in 4 dairy herds) that had failed to display estrus as defined by increased pedometer activity by 63 ± 3 d in milk, were enrolled to investigate the effect of a progesterone-releasing intravaginal device (PRID, n = 268) relative to a placebo intravaginal device (PID, control, n = 266) on days from device removal to artificial insemination (AI), the probability of pregnancy at first AI, and days from device removal to pregnancy. Cows were assigned randomly to receive a PRID or PID for 7 d and an injection of PGF2α at device removal. Upon device removal, a vaginitis score was assigned and AI occurred at observed estrus. Cows failing to display estrus within 14 d of device removal were subjected to a subsequent reproductive exam and were treated with PGF2α. Two percent of PRID-treated cows and 11% of control cows displayed estrus during the 7-d exposure period. Among the remaining cows, 93% of the devices were present at the scheduled removal. Cows treated with the PRID were 60% less likely to have purulent debris on the device than control cows. Vaginal reaction, however, was not associated with any of the reproductive outcomes. Investigation of the reproductive outcomes revealed a treatment × parity interaction. Progesterone-treated primiparous cows were inseminated 17 d earlier, with no significant change in the probability of pregnancy at first AI (30.3 vs. 42.0%), and no difference in median time from device removal to pregnancy (52 vs. 53 d) relative to control primiparous cows. Conversely, PRID-treated multiparous cows were inseminated 8 d earlier, with no change in probability of pregnancy at first AI (24.6 vs. 18.8%); however, median time from device removal to pregnancy was reduced by 20 d (67 vs. 87 d). These results support the efficacy of a PRID to induce estrus in previously anestrous cows. The reason, however, for the variable response between primiparous and multiparous cows was not clear.  相似文献   

19.
Our objectives were to determine relationships among factors influencing responses to the first GnRH injection in a timed artificial insemination (TAI) protocol and subsequent fertility after altering timing of the second GnRH injection and AI relative to PGF2α injection. Replacement heifers (n = 86) and 613 lactating cows previously inseminated were diagnosed not pregnant to form 77 breeding clusters spanning 36 mo. At not-pregnant diagnosis (d 0), females received 100 μg of GnRH, and then 7 d later, they received 25 mg of PGF2α. Females in 2 treatments received GnRH 48 h (G48) after PGF2α injection and TAI at the time of the second GnRH injection (G48 + TAI48) or 24 h later (G48 + TAI72). Females in the third treatment received GnRH 72 h after PGF2α when inseminated (G72 + TAI72). Neither timing of GnRH nor time of AI altered TAI pregnancy rates (average of 20.4%). Ovaries of females in 65 clusters were scanned on d 0 (first GnRH injection) and 7 d later (PGF2α injection). Ovarian structures were mapped and ovulation in response to the first GnRH injection was evaluated on d 7. When estrus was detected before scheduled TAI, females were inseminated; otherwise, TAI conception of remaining females was based on timing of GnRH and AI in 3 treatments. On d 7, 1 or more new corpora lutea (CL) were detected in 43% of females and their pregnancy rate was subsequently greater (28 vs. 18%) than those not ovulating. Follicle diameters on d 0 did not differ between females that did (11.9 ± 0.3 mm) and did not (11.8 ± 0.4 mm) subsequently ovulate in response to GnRH. Follicle diameter and number of follicles ≥5 mm increased with increasing lactation number, but decreased with increasing number of CL. Diameter of follicles in which more than 1 follicle ovulated decreased linearly from that in which only 1 follicle ovulated. Incidence of ovulation increased with increasing lactation number and total number of follicles ≥5 mm, but decreased with increasing number of CL. Incidence of multiple ovulations (15%) was greater in females having more follicles ≥5 mm and in those in early diestrus. Multiple ovulation did not occur in heifers, but was decreased in cows having more than 1 CL. In cows having more than 1 CL, luteal regression was reduced by 5.6 percentage units compared with those having 1 CL. In a TAI protocol, pregnancy rate was greater for females in early diestrus compared with females in other stages of the cycle, in those that ovulated after the first GnRH injection, in those having luteolysis, and in those inseminated during nonsummer months.  相似文献   

20.
Presynchronization strategies, such as Presynch-Ovsynch and Double-Ovsynch, increase fertility to timed artificial insemination (TAI) compared with Ovsynch alone; however, simpler presynchronization strategies could reduce costs and simplify reproductive management. Lactating Holstein cows (n = 601) were randomly assigned to 1 of 2 presynchronization treatments before beginning an Ovsynch-56 protocol (GnRH at 70 ± 3 DIM, PGF 7 d later, GnRH 56 h after PGF, and TAI 16 h later at 80 ± 3 DIM) for first TAI. Cows (n = 306) in the first treatment (Double-Ovsynch; DO) were presynchronized using a modified Ovsynch protocol (GnRH at 53 ± 3 DIM, 7 d later PGF, and GnRH 3 d later) ending 7 d before the first GnRH injection (G1) of an Ovsynch-56 protocol. Cows (n = 295) in the second treatment (GGPG) were presynchronized using a single injection of GnRH 7 d before G1 of an Ovsynch-56 protocol at 63 ± 3 DIM. Blood samples were collected at G1 and the PGF injections of the Ovsynch-56 protocol to determine progesterone (P4) concentrations. Pregnancy diagnosis was performed using ultrasonography 32 d after TAI, and pregnant cows were reexamined 46 and 70 d after TAI. Overall, DO cows had more pregnancies per artificial insemination (P/AI) compared with GGPG cows 32 d after TAI (53 vs. 43%). Overall, P/AI did not differ by parity (primiparous vs. multiparous), and pregnancy loss did not differ between treatments or parities. More DO cows had P4 in a medium range (>0.5 to <4 ng/mL) at G1 of the Ovsynch-56 protocol compared with GGPG cows (82 vs. 50%), and more DO cows had high P4 (>4 ng/mL) at the PGF injection of the Ovsynch-56 protocol compared with GGPG cows (67 vs. 36%). Thus, presynchronization with a modified Ovsynch protocol increased P/AI after TAI at first AI by increasing synchrony to the Ovsynch-56 protocol compared with presynchronization using a single injection of GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号