首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to test the feasibility of extended lactations in pastoral systems by using divergent dairy cow genotypes [New Zealand (NZ) or North American (NA) Holstein-Friesian (HF)] and levels of nutrition (0, 3, or 6 kg/d of concentrate dry matter). Mean calving date was July 28, 2003, and all cows were dried off by May 6, 2005. Of the 56 cows studied, 52 (93%) were milking at 500 d in milk (DIM) and 10 (18%) were milking at 650 DIM. Dietary treatments did not affect DIM (605 ± 8.3; mean ± SEM). Genotype by diet interactions were found for total yield of milk, protein, and milk solids (fat + protein), expressed per cow and as a percentage of body weight. Differences between genotypes were greatest at the highest level of supplementation. Compared with NZ HF, NA HF produced 35% more milk, 24% more milk fat, 25% more milk protein, and at drying off had 1.9 units less body condition score (1 to 10 scale). Annualized milk solids production, defined as production achieved during the 24-mo calving interval divided by 2 yr, was 79% of that produced in a normal 12-mo calving interval by NZ HF, compared with 94% for NA HF. Compared with NZ HF, NA HF had a similar 21-d submission rate (85%) to artificial insemination, a lower 42-d pregnancy rate (56 vs. 79%), and a higher final nonpregnancy rate (30 vs. 3%) when mated at 451 d after calving. These results show that productive lactations of up to 650 d are possible on a range of pasture-based diets, with the highest milk yields produced by NA HF supplemented with concentrates. Based on the genetics represented, milking cows for 2 yr consecutively, with calving and mating occurring every second year, may exploit the superior lactation persistency of high-yielding cows while improving reproductive performance.  相似文献   

2.
The aim of this study was to assess the effect of workability traits like milking speed and temperament on functional longevity of Canadian dairy cattle using a Weibull proportional hazards model. First-lactation data consisted of the following: 1,728,289 and 2,426,123 Holstein cows for milking temperament and milking speed, respectively, from 18,401 herds and sired by 8,248 sires; 39,618 and 60,121 Jersey cows for milking temperament and milking speed, respectively, from 1,845 herds and sired by 2,413 sires; and 54,391 and 94,847 Ayrshire cows for milking temperament and milking speed, respectively, from 1,316 herds and sired by 2,779 sires. Functional longevity was defined as the number of days from the first calving to culling, death, or censoring adjusted for production. Milking temperament and milking speed were recorded on a 1- to 5-point scale from very nervous to very calm and from very slow to very fast, respectively. The statistical model included the effects of stage of lactation; season of production; the annual change in herd size; type of milk recording supervision; age at first calving; effects of milk, fat, and protein yields calculated as within herd-year-parity deviations; herd-year-season of calving; sire; and milking temperament or milking speed class. The relative culling rate was calculated for animals in each milking temperament or milking speed class after accounting for the above-mentioned effects. The study showed that there was a statistically significant association between workability traits and functional longevity. Very nervous cows were 26, 23, and 46% more likely to be culled than very calm cows in Holstein, Ayrshire, and Jersey breeds, respectively. Similarly, very slow milkers were 36, 33, and 28% more likely to be culled than average milkers in Holstein, Ayrshire, and Jersey breeds, respectively. Additionally, very fast milkers were 11, 13, and 15% more likely to be culled than average milkers in Holstein, Ayrshire, and Jersey breeds, respectively. Producers might want to avoid consequences associated with the fast milkers such as udder health problems.  相似文献   

3.
The first objective of this study was to compare the productive and reproductive performance of Holstein-Friesian (CH HF), Fleckvieh (CH FV), and Brown Swiss (CH BS) cows of Swiss origin with New Zealand Holstein-Friesian (NZ HF) cows in pasture-based compact-calving systems; NZ HF cows were chosen as the reference population for such grazing systems. The second objective was to analyze the relationships within and between breeds regarding reproductive performance, milk yield, and body condition score (BCS) dynamics. On 15 commercial Swiss farms, NZ HF cows were paired with Swiss cows over 3 yr. Overall, the study involved 259 complete lactations from 134 cows: 131 from 58 NZ HF, 40 from 24 CH HF, 43 from 27 CH FV, and 45 from 25 CH BS cows. All production parameters were affected by cow breed. Milk and energy-corrected milk yield over 270 d of lactation differed by 1,000 kg between the 2 extreme groups; CH HF having the highest yield and CH BS the lowest. The NZ HF cows had the greatest milk fat and protein concentrations over the lactation and exhibited the highest lactation persistency. Body weight differed by 90 kg between extreme groups; NZ HF and CH BS being the lightest and CH HF and CH FV the heaviest. As a result, the 2 HF strains achieved the highest milk production efficiency (270-d energy-corrected milk/body weight0.75). Although less efficient at milk production, CH FV had a high 21-d submission rate (86%) and a high conception rate within 2 inseminations (89%), achieving high pregnancy rates within the first 3 and 6 wk of the breeding period (65 and 81%, respectively). Conversely, poorer reproductive performance was recorded for CH HF cows, with NZ HF and CH BS being intermediate. Both BCS at nadir and at 100 d postpartum had a positive effect on the 6-wk pregnancy rate, even when breed was included in the model. The BCS at 100 d of lactation also positively affected first service conception rate. In conclusion, despite their high milk production efficiency, even in low-input systems, CH HF were not suited to pasture-based seasonal-calving production systems due to poor reproductive performance. On the contrary, CH FV fulfilled the compact-calving reproduction objectives and deserve further consideration in seasonal calving systems, despite their lower milk production potential.  相似文献   

4.
The objectives of the study were to compare the ovarian activity of Holstein-Friesian (CH HF), Fleckvieh (CH FV) and Brown Swiss (CH BS) dairy cows of Swiss origin with that of Holstein-Friesian (NZ HF) dairy cows of New Zealand origin, the latter being used as a reference for reproductive performance in pasture-based seasonal calving systems. Fifty, second-lactation NZ HF cows were each paired with a second-lactation Swiss cow (17, 15 and 18 CH HF, CH FV and CH BS respectively) in 13 pasture-based, seasonal-calving commercial dairy farms in Switzerland. Ovarian activity was monitored by progesterone profiling from calving to first breeding service. CH BS cows produced less energy-corrected milk (mean 22·8 kg/d) than the other breeds (26·0-26·5 kg/d) during the first 100 d of lactation. CH HF cows had the lowest body condition score (BCS) at calving and the greatest BCS loss from calving to 30 d post partum. Commencement of luteal activity (CLA) was later for NZ HF than for CH FV (51·5 v. 29·2 d; P <0·01), with CH HF and CH BS intermediate (43 d). On average, NZ HF and CH HF cows had one oestrous cycle before the onset of the seasonal breeding period; this was less (P<0·01) than either CH FV (1·7) or CH BS (1·6). There was a low prevalence of luteal persistency (3%) among the studied cows. First and second oestrous cycle inter-ovulatory intervals did not differ between breeds (20·5-22·6 d). The luteal phase length of CH BS during the second cycle was shorter (10·6 d) than that of the other breeds (13·8-16·0 d), but the inter-luteal interval was longer (9·8 d v. 7·0-8·0 d). The results suggest that the Swiss breeds investigated have a shorter interval from calving to CLA than NZ HF cows.  相似文献   

5.
The key objectives of this study were to investigate differences in milking characteristics and udder health between Holstein-Friesian (HF), Jersey (J), and Jersey × Holstein-Friesian (F1) cows and to determine possible associations between milking characteristics and udder health. Records were available from 329 lactations (162 cows): 65 HF, 48 J, and 49 F1. Data included lactation mean milk yield, somatic cell score (SCS), incidence of mastitis, average milk flow (AMF), peak milk flow (PMF), and milking duration (MD). Breed group had a significant effect on milk yield and was higher with the HF cows (18.0 kg/d) compared with the J cows (14.2 kg/d). Udder health (SCS and incidence of mastitis at least once during lactation) were similar across the breed groups. Average milk flow was greater with the HF cows (1.36 kg/min) compared with the J cows (1.09 kg/min). Peak milk flow also tended to greater with the HF cows. No difference in MD was observed between the breed groups. The performance of the F1 cows tended to be similar to the mid-parent (breed) mean for udder health and MD, but heterosis was evident for milk yield, AMF, and PMF. Correlations examined showed that phenotypic milk yield was negatively associated with SCS. Increased milk yield was synonymous with increased AMF, PMF, and MD. Correlations between SCS and milking characteristics were weak. Correlations also showed that cows with low AMF and PMF had extended MD. Therefore, no difference in udder health was observed between HF, J, or F1 cows. The fact that higher yielding animals exhibit faster milking speeds was confirmed; however, no difference in MD was observed between the breed groups. Such findings indicate that regularity in the milking process will be maintained within mixed-breed herds.  相似文献   

6.
Relationships among body condition score (BCS), milk constituents, and resumption of postpartum luteal function were studied in 162 lactations of first- and second-parity Norwegian dairy cows. Milk components included acetone, lactose, fat, protein, urea, and ratios of fat to protein and fat to lactose. Milk progesterone concentrations were used to determine intervals from calving to first luteal response (> 5 ng/ml). Intervals to first luteal response were divided into categories of early (< or = 24 d) or late (> 24 d) responses. Higher BCS were observed during wk 4 and 5 postpartum among both first- and second-parity cows with early compared with delayed luteal responses. Second-parity cows with early onset of luteal function also had higher BCS from wk 6 through 12, whereas first-parity cows with early onset of luteal function had higher BCS from wk 13 through 15. Higher acetone levels from wk 2 through 4 postpartum were associated with late luteal response in second-parity cows. Greater milk lactose content during wk 1, 2, 3, 6, 7, and 8 postpartum and higher fat fractions during wk 4 postpartum were related to early luteal response in second-parity cows. Relationships between milk constituents and onset of luteal function were less evident and occurred later postpartum among first-parity cows than among second-parity cows. Measures of weekly milk composites obtained during the early postpartum period and BCS were closely associated with postpartum resumption of luteal function. Acetone and lactose values in milk from the first 4 wk postpartum predicted postpartum luteal function in second-parity cows at a sensitivity of 0.84 and specificity of 0.86.  相似文献   

7.
The objective of this study was to quantify differences in udder health and milking characteristics among the Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde × Holstein-Friesian (MBX), and Normande × Holstein-Friesian (NMX) genotypes, while considering the effect of feeding system and parity. A total of 749 lactations were available for inclusion in the analysis from 309 cows in 1 research herd over 5 yr. Somatic cell score (SCS; i.e., natural logarithm of somatic cell count) was used as an indicator of udder health. Milking duration (seconds/d) was defined as the sum of the milking duration in the a.m. and milking duration in the p.m. Average daily milk flow (AMF; kg/min) was defined as total daily milk yield divided by total daily milking duration. Peak milk flow (kg/min) was defined as the maximum rate of milk flow achieved in the daily milking process. The SCS of the NRF (10.31 units) and MB (10.47 units) breeds was less than that of the HF (10.96 SCS units), whereas that of the NM (10.88 SCS units), MBX (10.93 SCS units), and NMX (10.84 SCS units) breeds was similar to that of the HF. The MBX and NMX had the greatest AMF (1.56 and 1.54 kg/min, respectively) and the NM had the lowest (1.33 kg/min). Animals offered a high concentrate diet had greater AMF, peak milk flow, and milking duration. The differences expressed by the divergent breeds may reflect differences in the past breeding goals among the breeds, namely the inclusion of traits aimed at maintaining or improving udder health.  相似文献   

8.
Lactation yield estimates standardized to common lactation lengths of 270-d or 305-d equivalents are commonly used in management decision support tools and dairy cow genetic evaluations. The use of such measurements to quantify the (genetic) merit of individual cows fails to penalize cows that do not reach the standardized lactation length, or indeed reward cows that lactate for more than the standardized lactation length. The objective of the present study was to quantify the genetic and nongenetic factors associated with lactation length in seasonal-calving, pasture-based dairy cows. A total of 616,350 lactation length records from 285,598 Irish cows were used. Linear mixed models were used to quantify the associations between lactation length and calving month, parity, age at calving, previous dry period length, calving difficulty score, heterosis, recombination loss, breed, and herd size, as well as to estimate the genetic and residual variance components of lactation length. The median lactation length in the edited data set was 288 d, with 27% of cows achieving lactations of at least 305 d. Relative to cows calving in January, the lactations of cow calving in February, March, or April was, on average, 4.2, 12.7, and 21.9 d shorter, respectively. The lactation length of a first parity cow was, on average, 7.8, 8.6, and 8.4 d shorter than that of second, third, and fourth parity cows, respectively. Norwegian Red and Montbéliarde cows had, on average, a 4.7- and 1.6-d shorter lactation than Holstein-Friesian cows, respectively. The heritability estimate, coefficient of genetic variation, and repeatability estimate of lactation length were 0.02, 1.2%, and 0.04, respectively. Based on the genetic standard deviation for lactation length estimated in the present study (3.3 d), cows ranked in the top 20% for genetic merit for lactation length would be expected to have lactations 9.2 d longer than cows in the bottom 20%, demonstrating exploitable genetic variability. Given the vast array of genetic and nongenetic factors associated with lactation length, an approach which combines improved management practices and selective breeding may be an efficient and effective strategy to lengthen lactations.  相似文献   

9.
In this study, maternal effects were described as age of dam at first and second calving, first-lactation body condition score (BCS) of the dam during gestation, and milk yield of the dam. The impact of these effects on first-lactation daughter BCS, fertility, and test-day milk yield was assessed. The effect of milk yield of dam on daughter 305-d yield in the latter's first 3 lactations was also investigated. The proportion of total phenotypic variance in daughter traits accounted for by maternal effects was calculated. Dams calving early for the first time (18 to 23 mo of age) had daughters that produced 4.5% more first-lactation daily milk, had 7% higher BCS, and had their first service 3 d earlier than cows whose dams calved late (30 to 36 mo). However, daughters of dams that calved early had difficulties conceiving as they needed 7% more inseminations and had a 7.5% higher return rate. Cows from second calvings of relatively young (36 to 41 mo) dams produced 6% more first-lactation daily milk, had 2% higher BCS, and showed a significantly better fertility profile than cows whose dams calved at a late age (47 to 55 mo). High maternal BCS during gestation had a favorable effect on daughter BCS, nonreturn rate, and number of inseminations per conception. However, it was also associated with a small decrease in daughter daily milk yield. Changes in dam BCS during gestation did not affect daughter performance significantly. Maternal effects of milk yield of the dam, expressed as her permanent environment during lactation, adversely affected daughter 305-d milk, fat, and protein yield. However, although the effect was significant, it was practically negligible (<0.3% of the mean). Finally, overall maternal effects accounted for a significant proportion of the total phenotypic variance of calving interval (1.4 ± 0.6%) and nonreturn rate (1.1 ± 0.5%).  相似文献   

10.
The objective of this study was to determine the contribution of cow factors to the probability of a successful first insemination (SFI). The investigation was performed with 51,791 lactations from 1,396 herds obtained from the Dutch dairy cow database of the Cattle Improvement Co-operative (CRV). Cows that had the first insemination (AI) between 40 and 150 d postpartum were selected. The first AI was classified as successful when cows were not reinseminated and either calved between 267 and 295 d later or were culled within 135 to 295 d after first AI. The lactation curve characteristics of individual lactations were estimated by Wilmink's curve using the test-day milk records from CRV. The lactation curve characteristics (peak milk yield, milk yield at the first-AI date, time of peak yield (PT), and milk persistency) were calculated. Breed, parity, interval from calving to first AI (CFI), lactation curve characteristics, milk production traits, moment of AI related to PT (before or after PT), calf status, month of AI, and month of calving were selected as independent variables for a model with SFI as a dependent variable. A multivariable logistic regression model was used with farm as a random effect. Overall SFI was 44%. The effect of parity on SFI depended on CFI. The first-parity cows had the greatest SFI (0.43) compared with other parities (0.32-0.39) at the same period of CFI before 60 d in milk (DIM), and cows in parity ≥5 had the least SFI (0.38-0.40) when AI was after 60 DIM. After 60 DIM, extending CFI did not improve SFI in the first-parity cows, but SFI was improved in multiparous cows. Holstein-Friesian cows had lesser SFI (0.37) compared with cross-breed cows (0.39-0.46). Twin and stillbirth calving reduced SFI (0.39) compared with a single female calf (0.45) or a male calf (0.43) calving. The SFI in different months of AI varied and depended on CFI. Cows that received AI before 60 DIM had a lesser SFI, especially in March, June, and July (0.18, 0.35, and 0.34, respectively). Artificial insemination before PT reduced SFI (0.39) in comparison with AI after PT (0.44). The effect of milk yield at the first-AI date on SFI varied depending on CFI. After 60 DIM at the same period of CFI, a high level of milk yield at the first-AI date reduced SFI. In conclusion, knowledge of the contribution of cow factors on SFI can be applied to support decision making on the moment of insemination of an individual cow in estrus.  相似文献   

11.
Freestall housing for dairy cows has many different layouts and the space allocated for cows differs considerably. The objective of the present study was to investigate possible associations between barn layout and milk yield for different parities in small dairy freestall barns. Layouts of 204 Norwegian freestall barns constructed during the period from 1995 to 2005, and with a mean herd size of 42.7 ± 15.5 cows, were obtained and merged with milk yield data and calving interval, for each parity, from the Norwegian Milk Recording System (NDHRS). The milk yield data set contained 20,221 different lactations from these 204 herds. Both simple mixed models, including the different explanatory variables one by one together with parity, calving interval, and herd as random effect, and a final mixed model, including all significant explanatory variables, were created. According to variables tested in this study, the final mixed model estimates show that only primiparous cows benefit significantly from increased free space allocation. Milk yield was generally higher in automatic milking system barns compared with that in barns with milking parlors, but not for primiparous cows. Milk yield was higher for all parities for barns using separation pens in accordance with the recommendations. Barns with 2 or more dead-end alleys had lower milk yield compared with that from layouts without dead-end alleys. Primiparous cows benefited from water troughs located for easy access and responded with increased milk yield. In 10% of the barns, the water trough capacity was less than 47% of the recommendations, and all parities benefited from a water trough capacity higher than this level. Higher parities had increased milk yield when water trough capacity was more than 80%. Feed bunk space, number of freestall rows, and the location of freestalls had no significant effect on the milk yield. The present study showed that increased space and improved access to water is beneficial to primiparous cows, whereas layouts without dead-end alleys and improved water capacity is beneficial for all cows in freestall systems.  相似文献   

12.
《Journal of dairy science》2014,97(11):6850-6868
This study investigated the immediate and long-term effects of temporary alterations to postpartum milking frequency (MF) on milk production, body condition score (BCS), and indicators of energy status in pasture-grazed cows supplemented with concentrates. Multiparous Holstein-Friesian cows (n = 150) were randomly assigned to 1 of 5 groups at calving: milked twice daily (2×) throughout lactation (control), or milked either once daily (1×) or 3 times daily (3×) for 3 or 6 wk immediately postpartum, and then 2× for the remainder of lactation. During wk 1 to 3 postpartum, cows milked 1× produced 15% less milk and 17% less energy-corrected milk (ECM) than cows milked 2×. This immediate production loss increased to 20% less milk and 22% less ECM during wk 4 to 6 postpartum for cows that remained on 1× milking; these animals also produced less than 1× cows switched to 2× milking after 3 wk. During wk 8 to 32, when all cows were milked 2×, those previously milked 1× had sustained reductions in milk (−6%) and ECM (−8%) yields, which were not affected by the duration of reduced postpartum MF. In contrast, cows milked 3× postpartum had 7% greater milk yields during wk 1 to 6 compared with 2× controls, irrespective of the duration of increased MF. Milk yields also remained numerically greater (+5%) during wk 8 to 32 in cows previously milked 3×. Nevertheless, yields of ECM were not increased by 3× milking, because of lower milk fat and protein contents that persisted for the rest of lactation. In addition, indicators of cow energy status reflected an increasing state of negative energy balance with increasing MF. Cows milked 1× postpartum had greater plasma glucose and lower plasma nonesterified fatty acid concentrations during the reduced MF, and plasma glucose remained lower for 2 wk after cows had switched to 2× milking. Moreover, BCS was improved relative to 2× controls from wk 5 to 6. In contrast, cows milked 3× had lower plasma glucose concentrations, greater plasma nonesterified fatty acid concentrations, and greater BCS loss during wk 1 to 3; however, greater body fat mobilization was not sustained, indicating that additional energy supplements may be required to achieve better milk production responses. In conclusion, temporary 1× milking had lactation-long negative effects on milk and milk component yields but improved cow energy status and BCS, whereas temporary 3× milking immediately increased milk yield but did not improve milk fat and protein yields in pasture-grazed cows.  相似文献   

13.
The effect of feeding to achieve differential growth rates in Holstein-Friesian (HF; n = 259) and Jersey (n = 430) heifers on time to puberty and first lactation milk production was investigated in a 3 × 2 factorial design. Holstein-Friesian and Jersey calves were reared to achieve a BW of 100 and 80 kg, respectively, at 100 d. At target weight, all calves were randomly allocated to one of 3 feeding treatments to achieve different growth rates. Holstein-Friesian and Jersey calves were fed fresh pasture to achieve average daily growth rates of 0.77, 0.53, or 0.37 kg of BW/d (HF) and 0.61, 0.48, or 0.30 kg of BW/d (Jersey), respectively. Period 1 (prepubertal) was imposed until HF and Jersey treatment groups averaged 200 and 165 kg of BW, respectively. Following period 1, HF and Jersey calves from each treatment group were randomly allocated to one of 2 feeding treatments to achieve average daily growth rates of 0.69 or 0.49 kg of BW/d (HF) and 0.58 and 0.43 kg of BW/d (Jersey), respectively. Period 2 (postpubertal) was imposed until 22 mo, when heifers were returned to their farms of origin. Body weight, body condition score, height, heart girth circumference (HGC), milk production, and fertility-related data were collected until the end of the third lactation. Time to reach puberty was negatively associated with level of feeding, and heifers attained puberty at the same BW (251 ± 25.4 and 180 ± 24.0 kg for HF and Jersey heifers, respectively). Heifers on high feed allowances during periods 1 and 2 were heavier, taller, and had greater HGC than their slower grown counterparts until 39 mo of age when height and HGC measurements stopped. Body weight differences remained until 51 mo, when measurements ceased. High feed allowance during period 1 (prepubertal) did not affect milk production during the first 2 lactations, but did reduce milk production in lactation 3. It is possible that the expected negative effect of accelerated pre-pubertal growth was masked by greater calving BW, as BW-corrected milk yield declined in both breeds with increasing prepubertal feed allowance. Growth rate during period 2 was positively correlated with first lactation milk production. Milk yield increased 7% in first lactation heifers on the high feed allowance, which resulted in higher growth rate during period 2. Milk production during subsequent lactations was not affected. Results suggest that accelerated prepubertal growth may reduce mammary development in grazing dairy cows, but this does not affect milk production in early lactations because of superior size. Body weight at calving and postpubertal growth rate management are important in first lactation milk production, but do not affect milk production in subsequent lactations.  相似文献   

14.
Relationships among milk production, body condition score (BCS), body weight (BW), and reproduction were studied using logistic regression on data from 6433 spring-calving Holstein-Friesian dairy cows in 74 commercial herds. Multivariate models were adjusted for herd, breeding value for milk yield, proportion of Holstein-Friesian genes, lactation number, calving period, and degree of calving assistance. Significant associations between reproductive measures and components of energy balance were identified. Higher 200-d milk protein content and higher protein-to-fat ratio at start of breeding were associated with increased likelihood of submission for breeding in the first 21 d of the breeding season (SR21). High 100-d cumulative milk yield as a proportion of estimated 305-d milk yield (low persistency) was associated with a lower likelihood of pregnancy to first service (PREG1), whereas cows reaching peak milk yields earlier tended to have higher PREG1. Cows that reached nadir milk protein content relatively late in lactation had lower PREG1. Milk yield at first service and 305-d milk protein content were positively associated with the likelihood of pregnancy after 42 d of breeding (PR42). Higher 305-d milk lactose content was associated with increased PREG1 and PR42. Mean BCS at 60 to 100 d of lactation was positively associated with both SR21 and PR42, whereas nadir BCS was positively associated with PREG1. Cows with precalving BCS > 3.0 that also lost > 0.5 BCS unit by first service had lower PR42. More BW gain for 90 d after start of breeding was associated with higher SR21 and PREG1; more BW gain for 90 d after first service was associated with higher PR42. Milk protein and lactose content, BCS, and BW changes are important tools to identify cows at risk of poor reproduction.  相似文献   

15.
Emphasis by dairy producers on various yield and fitness traits when culling cows was documented for US Holstein calvings since 1982. Least squares differences between cows retained for additional parities and those culled were estimated for milk, fat, and protein yields; somatic cell score (SCS); days open (DO); dystocia score (DS), final score (FS), and 14 type traits. Compared with cows culled during first lactation, superiority for first-parity milk yield was 569 to 1,175 kg for cows with 2 lactations, 642 to 1,283 kg for cows with ≥2 lactations, 710 to 1,350 kg for cows with 3 lactations, and 663 to 1,331 kg for cows with ≥4 lactations. Cows retained for ≥2 lactations had first-parity SCS that were 0.34 to 0.62 lower (more favorable) than those of cows culled during first lactation; first-parity SCS for cows retained for 3 or ≥4 lactations were even more favorable than those of cows with 1 or 2 lactations. The negative genetic relationship between yield and fertility contributed to increased DO as selection for higher milk yield persisted across time despite considerable preference for early conception when culling cows. In 1982, cows retained in the herd for 2, 3, and ≥4 lactations conceived earlier during first lactation (19, 17, and 23 fewer DO, respectively) than those culled during first lactation; those differences had increased to 34, 41, and 52 fewer DO by 2000. Although DS has a negative relationship with survival, first-parity DS were only slightly lower (by 0.10 to 0.14) for survivors than for cows culled during first lactation. Cows retained for ≥2 lactations had greater first-parity FS by 1.4 to 1.9 points than those culled during first lactation. On a standardized basis, the most intense selection during first lactation was for milk and protein yields with less for fat (74 to 86% of that for milk), DO (18 to 74%), FS (22 to 38%), SCS (19 to 37%), and DS (7 to 15%). Producers continued to emphasize the same traits when culling during second and third lactations. Trait priority by producers during culling could aid in setting trait emphasis when selecting bulls for progeny test and could also be useful in developing software for index-based culling guides.  相似文献   

16.
The objective of this study was to investigate the potential differences among Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde × Holstein-Friesian (MBX), and Normande × Holstein-Friesian (NMX) across 2 seasonal grass-based systems of milk production. The effects of breed and feeding system on milk production, body weight, body condition score, fertility performance, hormone parameters, ovarian function, and survival were determined by using mixed model methodology, generalized linear models, and survival analysis. The 5-yr study comprised up to 749 lactations on 309 cows in one research herd. The HF produced the greatest yield of solids-corrected milk, the MB and NM produced the least yields, and NRF, MBX, and NMX were intermediate. The NRF had the lowest body weight throughout lactation, the NM had the highest, and the other breeds were intermediate. Body condition score was greatest for MB and NM, least for HF, and intermediate for NRF, MBX, and NMX. The HF had a lower submission rate and overall pregnancy rate compared with the NRF. The NRF survived the longest in the herd, the HF survived the shortest, and the NM, MB, MBX, and NMX were intermediate. Breed of dairy cow had no effect on selected milk progesterone parameters from 5 d postpartum until 26 d after first artificial insemination. Breed of dairy cow did not influence insulin and insulin-like growth factor-1 around parturition or at the start of the breeding season. Animals offered a high-concentrate diet had greater milk yield, but they did not have improved reproductive performance. Differences observed between the different breeds in this study are a likely consequence of the past selection criteria for the respective breeds.  相似文献   

17.
The objective of the present study was to identify and quantify relationships among dairy cow body condition score (BCS) and body weight (BW) and production variables in pasture-based, seasonal-calving herds. More than 2,500 lactation records from 897 spring-calving Holstein-Friesian and Jersey dairy cows were used in the analyses. Six variables related to BCS and BW, including observations precalving, at calving, and nadir as well as days to nadir and change precalving and between calving and nadir were generated. An exponential function was fitted within lactation to milk and 4% fat-corrected milk (FCM) yield data to model lactation curves. The milk production variables investigated were the parameters of the fitted function as well as accumulated yield of milk and FCM at 60 and 270 days in milk and average milk composition. Mixed models were used to identify BCS and BW variables that significantly affected milk production. After adjusting for the fixed effect of year of calving, parity, and days dry, milk and FCM yields were nonlinearly associated with calving and nadir BCS, increasing at a declining rate up to BCS 6.0 to 6.5 (10-point scale; approximately 3.5 in the 5-point scale) and declining thereafter. However, there was very little increase in milk and FCM yields above a calving BCS of 5.0 (approximately 3.0 in the 5-point scale). Average milk fat content over 60 and 270 days in milk was positively correlated with increasing calving and nadir BCS. In comparison, milk protein percentage was not influenced by calving BCS but was positively associated with nadir BCS and negatively associated with BCS lost between calving and nadir. The effect of BW and changes in BW were similar to the effect of BCS, although the scale of the effect was breed-dependent. For example, milk and FCM yield increased linearly with increasing calving BCS, but the effect was greater in Holstein-Friesians compared with Jersey cows. The results are consistent with the literature and highlight the important role that BCS and BW loss has on milk production, irrespective of the system of farming.  相似文献   

18.
The relationships between body condition score (BCS) and ketosis, and between BCS and reproductive performance in 732 moderate yielding, dual-purpose cows were studied. The cows were of the breed Norwegian Cattle. Farms with tie-stall barns and a history of high ketosis incidence were chosen for the study. Sixteen assessors visited the farms monthly and the same assessor assigned a BCS to each cow once a month. A BCS of 3.5 or higher at calving was associated with increased risk for ketosis. Cows that subsequently developed ketosis had higher BCS than healthy cows before the disease was diagnosed, and they lost more body condition than did the latter after ketosis had occurred. Summer calving cows and primiparous cows showed the lowest risk of ketosis. A history of ketosis before first service decreased the likelihood of conception to that service. Loss in body condition during the postpartum period was associated with decreased likelihood of conception to first service, prolonged calving to conception intervals and increased number of artificial inseminations per conception. Reproductive performance was not associated with BCS at calving. We concluded that BCS is a useful method of monitoring relations among nutritional management, reproduction, and ketosis in moderate yielding dual-purpose cows.  相似文献   

19.
A short herd lifespan severely limits opportunities for on-farm selection of breeding cows in addition to causing financial losses on dairy farms and presenting welfare issues for individual animals. This prospective study monitored survival up to third calving and reasons for culling of a cohort of 468 Holstein-Friesian heifers on 18 dairy farms across southern England. Heifers born during 2003 and 2004 were monitored from 1 mo of age through to third calving. A longevity index was calculated as the proportion of days alive spent in milk production, a good measure of lifetime performance. On average, 11% of heifers recruited at 1 mo did not survive until first calving (0% longevity index). Of those that did calve, 19% were culled in lactation 1 (total average lifetime days in milk of 322 with a longevity index of 24%) and 24% were culled during lactation 2 (total average lifetime days in milk of 623 with a longevity index of 40%). The primary cause for culling was infertility. Only 55% of replacement heifers calved successfully for a third time, ranging from 80 to 32% across individual farms. These results show that on a selection of UK farms, a large number of heifers never become productive or are culled before they reach their full lactation potential. Increasing the productive lifetime of dairy cows would improve the efficiency of dairy production by lowering replacement costs and capturing a greater proportion of potential lactation milk yield from mature cows.  相似文献   

20.
《Journal of dairy science》1987,70(7):1442-1451
Length of herdlife, lifetime milk and component yields, daily milk and component yields, and survival rates were assessed from multiple lactation records of 927 cows in a Holstein line and an Ayrshire-based synthetic line. Holstein cows were progeny of random matings to either Holstein untested sires or progeny-tested Canadian and American Holstein sires. Ayrshire cows were randomly mated to Ayrshire untested sires or Canadian and American Ayrshire, Finnish Ayrshire, Norwegian Red, or Brown Swiss progeny-tested sires to produce the foundation females in the Ayrshire-based synthetic line.The Holstein cattle produced more milk and protein per day of milking herdlife or total herdlife than cows in the Ayrshire-based line and proportionately more survived to initiate second lactations. Daughters of the progeny-tested American and Canadian Holstein sires had significantly higher lifetime and daily milk, protein, and fat yields than daughters of young untested Holstein sires whereas lifetime yields of daughters of untested and progeny-tested Ayrshire sires were equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号