首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Escherichia coli and Salmonella typhimurium strains grown in Luria-Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria-Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5alpha does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.  相似文献   

2.
3.
The basis of protein stability has been investigated by the structural comparison of themophilic enzymes with their mesophilic counterparts. A number of characteristics have been found that can contribute to the stabilization of thermophilic proteins, but no one is uniquely capable of imparting thermostability. The crystal structure of 3-isopropylmalate dehydrogenase (IPMDH) from the mesophiles Escherichia coli and Salmonella typhimurium have been determined by the method of molecular replacement using the known structure of the homologous Thermus thermophilus enzyme. The structure of the E. coli enzyme was refined at a resolution of 2.1 A to an R-factor of 17.3%, that of the S. typhimurium enzyme at 1.7 A resolution to an R-factor of 19.8%. The three structures were compared to elucidate the basis of the higher thermostability of the T. thermophilus enzyme. A mutant that created a cavity in the hydrophobic core of the thermophilic enzyme was designed to investigate the importance of packing density for thermostability. The structure of this mutant was analyzed. The main stabilizing features in the thermophilic enzyme are an increased number of salt bridges, additional hydrogen bonds, a proportionately larger and more hydrophobic subunit interface, shortened N and C termini and a larger number of proline residues. The mutation in the hydrophobic core of T. thermophilus IPMDH resulted in a cavity of 32 A3, but no significant effect on the activity and thermostability of the mutant was observed.  相似文献   

4.
5.
6.
During the last decade, episodes of sepsis have increased and Escherichia coli has remained the most frequent clinical isolate. Lipopolysaccharides (LPS; endotoxin) are the major toxic and antigenic components of gram-negative bacteria and qualify as targets for therapeutic interventions. Molecules that neutralize the toxic effects of LPS are actively investigated. In this paper, we describe a murine monoclonal antibody (MAb; WN1 222-5), broadly cross-reactive and cross-protective for smooth (S)-form and rough (R)-form LPS. As shown in enzyme-linked immunosorbent assay and the passive hemolysis assay, WN1 222-5 binds to the five known E. coli core chemotypes, to Salmonella core, and to S-form LPS having these core structures. In immunoblots, it is shown to react with both the nonsubstituted core LPS and with LPS carrying O-side chains, indicating the exposure of the epitope in both S-form and R-form LPS. This MAb of the immunoglobulin G2a class is not lipid A reactive but binds to E. coli J5, an RcP+ mutant which carries an inner core structure common to many members of the family Enterobacteriaceae. Phosphate groups present in the inner core contribute to the epitope but are not essential for the binding of WN1 222-5 to complete core LPS. Cross-reactivity for clinical bacterial isolates is broad. WN1 222-5 binds to all E. coli clinical isolates tested so far (79 blood isolates, 80 urinary isolates, and 21 fecal isolates) and to some Citrobacter, Enterobacter, and Klebsiella isolates. This pattern of reactivity indicates that its binding epitope is widespread among members of the Enterobacteriaceae. WN1 222-5 exhibits biologically relevant activities. In vitro, it inhibits the Limulus amoebocyte lysate assay activity of S-form and R-form LPS in a dose-dependent manner and it neutralizes the LPS-induced release of clinically relevant monokines (interleukin 6 and tumor necrosis factor). In vivo, WN1 222-5 blocks endotoxin-induced pyrogenicity in rabbits and lethality in galactosamine-sensitized mice. The discovery of WN1 222-5 settles the long-lasting controversy over the existence of anti-core LPS MAbs with both cross-reactive and cross-protective activity, opening new possibilities for the immunotherapy of sepsis caused by gram-negative bacteria.  相似文献   

7.
cDNA sequences encompassing the full coding region for the human muscle acetylcholine receptor (AChR) epsilon and gamma subunits have been isolated. The deduced amino-acid sequences indicate that the mature epsilon subunit contains 473 amino acids and is preceded by a 20-amino-acid signal peptide. As predicted from genomic clones, the gamma subunit contains 495 amino acids preceded by a 22-amino-acid signal peptide. In common with the human alpha, beta, gamma and delta subunits the epsilon subunit is highly conserved between mammalian species. The epsilon subunit gene is not closely linked to the gamma and delta subunits on chromosome 2 but rather is located with the beta subunit on chromosome 17. Expression of the alpha-, beta-, gamma-, delta- and epsilon-subunit cRNAs in rabbit-reticulocyte lysates followed by analysis on SDS/PAGE show glycosylated proteins with apparent molecular masses of 44-60 kDa.  相似文献   

8.
Bovine enterotoxigenic Escherichia coli (ETEC) continues to cause mortality in piglets and newborn calves. In an effort to develop a safe and effective vaccine for the prevention of F5(+) ETEC infections, a balanced lethal asd+ plasmid carrying the complete K99 operon was constructed and designated pMAK99-asd+. Introduction of this plasmid into an attenuated Salmonella typhimurium Deltaaro Deltaasd strain, H683, resulted in strain AP112, which stably expresses E. coli K99 fimbriae. A single oral immunization of BALB/c and CD-1 mice with strain AP112 elicited significant mucosal immunoglobulin A (IgA) titers that remained elevated for >11 weeks. IgA and IgG responses in serum specific for K99 fimbriae were also induced, with a prominent IgG1, as well as IgG2a and IgG2b, titer. To assess the derivation of these antibodies, a K99 isotype-specific B-cell ELISPOT analysis was conducted by using mononuclear cells from the lamina propria of the small intestines (LP), Peyer's patches (PP), and spleens of vaccinated and control BALB/c mice. This analysis revealed elevated numbers of K99 fimbria-specific IgA-producing cells in the LP, PP, and spleen, whereas elevated K99 fimbria-specific IgG-producing cells were detected only in the PP and spleen. These antibodies were important for protective immunity. One-day-old neonates from dams orally immunized with AP112 were provided passive protection against oral challenge with wild-type ETEC, in contrast to challenged neonates from unvaccinated dams or from dams vaccinated with a control Salmonella vector. These results confirm that oral Salmonella vaccine vectors effectively deliver K99 fimbriae to mucosal inductive sites for sustained elevation of IgA and IgG antibodies and for eliciting protective immunity.  相似文献   

9.
10.
In bacteria, the regulation of gene expression in response to changes in cell density is called quorum sensing. Quorum-sensing bacteria produce, release, and respond to hormone-like molecules (autoinducers) that accumulate in the external environment as the cell population grows. In the marine bacterium Vibrio harveyi two parallel quorum-sensing systems exist, and each is composed of a sensor-autoinducer pair. V. harveyi reporter strains capable of detecting only autoinducer 1 (AI-1) or autoinducer 2 (AI-2) have been constructed and used to show that many species of bacteria, including Escherichia coli MG1655, E. coli O157:H7, Salmonella typhimurium 14028, and S. typhimurium LT2 produce autoinducers similar or identical to the V. harveyi system 2 autoinducer AI-2. However, the domesticated laboratory strain E. coli DH5alpha does not produce this signal molecule. Here we report the identification and analysis of the gene responsible for AI-2 production in V. harveyi, S. typhimurium, and E. coli. The genes, which we have named luxSV.h., luxSS.t., and luxSE.c. respectively, are highly homologous to one another but not to any other identified gene. E. coli DH5alpha can be complemented to AI-2 production by the introduction of the luxS gene from V. harveyi or E. coli O157:H7. Analysis of the E. coli DH5alpha luxSE.c. gene shows that it contains a frameshift mutation resulting in premature truncation of the LuxSE.c. protein. Our results indicate that the luxS genes define a new family of autoinducer-production genes.  相似文献   

11.
The role of MucAB and Escherichia coli UmuDC proteins in mutagenesis by 4-quinolone (4-Q) compared to that in UV mutagenesis has been studied in hisG428 Salmonella typhimurium strains. A low-copy plasmid carrying mucAB genes, but not umuDC, promotes reversion of the hisG428 mutation by the 4-Q ciprofloxacin. In contrast, a umuDC plasmid mediates the reversion of hisG428 by UV, although less efficiently than a mucAB one. In addition, a unique copy of mucAB genes is enough to promote UV mutagenesis, whereas, several copies of them are required to detect ciprofloxacin mutagenesis. Therefore, the mutagenic repair of quinolone damage by MucAB proteins is not a very efficient process. The presence of an umuD'C plasmid but not a mucA'B one, slightly increases the reversion of the hisG428 mutation by ciprofloxacin and this finding is further discussed. In contrast, MucA'B are still more active than UmuD'C proteins in UV mutagenesis. These results suggest that the enhanced processing of MucA compared to UmuD would not explain all functional differences between MucAB and UmuDC proteins in the error-prone DNA repair.  相似文献   

12.
13.
BACKGROUND: Purine nucleoside phosphorylase (PNP) from Escherichia coli is a hexameric enzyme that catalyzes the reversible phosphorolysis of 6-amino and 6-oxopurine (2'-deoxy)ribonucleosides to the free base and (2'-deoxy)ribose-1-phosphate. In contrast, human and bovine PNPs are trimeric and accept only 6-oxopurine nucleosides as substrates. The difference in the specificities of these two enzymes has been utilized in gene therapy treatments in which certain prodrugs are cleaved by E. coli PNP but not the human enzyme. The trimeric and hexameric PNPs show no similarity in amino acid sequence, even though they catalyze the same basic chemical reaction. Structural comparison of the active sites of mammalian and E. coli PNPs would provide an improved basis for the design of potential prodrugs that are specific for E. coli PNP. RESULTS: The crystal structure of E. coli PNP at 2.0 A resolution shows that the overall subunit topology and active-site location within the subunit are similar to those of the subunits from human PNP and E. coli uridine phosphorylase. Nevertheless, even though the overall geometry of the E. coli PNP active site is similar to human PNP, the active-site residues and subunit interactions are strikingly different. In E. coli PNP, the purine- and ribose-binding sites are generally hydrophobic, although a histidine residue from an adjacent subunit probably forms a hydrogen bond with a hydroxyl group of the sugar. The phosphate-binding site probably consists of two main-chain nitrogen atoms and three arginine residues. In addition, the active site in hexameric PNP is much more accessible than in trimeric PNP. CONCLUSIONS: The structures of human and E. coli PNP define two possible classes of nucleoside phosphorylase, and help to explain the differences in specificity and efficiency between trimeric and hexameric PNPs. This structural data may be useful in designing prodrugs that can be activated by E. coli PNP but not the human enzyme.  相似文献   

14.
The fhuA genes of Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans were sequenced and compared with the known fhuA sequence of Escherichia coli. The highly similar FhuA proteins displayed the largest difference in the predicted gating loop, which in E. coli controls the permeability of the FhuA channel and serves as the principal binding site for the phages T1, T5, and phi80. All the FhuA proteins contained the region in the gating loops required in E. coli for ferrichrome and albomycin transport. The three subdomains required for phage binding were contained in the gating loop of S. paratyphi B which is infected by the E. coli phages, whereas two of the subdomains were deleted in S. typhimurium and P. agglomerans which are resistant to the E. coli phages. Small deletions in a surface loop adjacent to the gating loop, residues 236 to 243 and 236 to 248, inactivated E. coli FhuA with regard to transport of ferrichrome and albomycin, but sensitivity to T1 and T5 was fully retained and sensitivity to phi80 and colicin M was reduced 10-fold. Full-size FhuA hybrid proteins of S. paratyphi B and S. typhimurium displayed S. paratyphi B FhuA activity when the hybrids contained two-thirds of either the N- or the C-terminal portions of S. paratyphi B and displayed S. typhimurium FhuA activity to phage ES18 when the hybrid contained two-thirds of the N-terminal region of the S. typhimurium FhuA. The central segment of the S. paratyphi B FhuA flanked on both sides by S. typhimurium FhuA regions conferred full sensitivity only to phage T5. The data support the essential role of the gating loop for the transport of ferrichrome and albomycin, identified an additional loop for ferrichrome and albomycin uptake, and suggest that several segments and their proper conformation, determined by the entire FhuA protein, contribute to the multiple FhuA activities.  相似文献   

15.
16.
17.
18.
Escherichia coli strains carrying recombinant plasmids encoding either the type 1 fimbria of Salmonella enterica serovar Typhimurium or the G fimbria of E. coli exhibited binding of human 125I-Glu-plasminogen and enhanced the tissue-type plasminogen activator-catalyzed conversion of plasminogen to plasmin. Purified type 1 or G fimbriae similarly bound plasminogen and enhanced its activation. The binding of plasminogen did not involve the characteristic carbohydrate-binding property of the fimbriae but was inhibited at low concentrations by the lysine analog epsilon-aminocaproic acid. Because these fimbrial types bind to laminin of basement membranes (M. Kukkonen et al., Mol. Microbiol. 7:229-237, 1993; S. Saarela et al., Infect. Immun. 64:2857-2860, 1996), the results demonstrate a structural unity in the creation and targeting of bacterium-bound proteolytic plasmin activity to basement membranes.  相似文献   

19.
Gln34, Gln224, Leu228, and Ser240 are conserved residues in the vicinity of bound IMP in the crystal structure of Escherichia coli adenylosuccinate synthetase. Directed mutations were carried out, and wild-type and mutant enzymes were purified to homogeneity. Circular dichroism spectroscopy indicated no difference in secondary structure between the mutants and the wild-type enzyme in the absence of substrates. Mutants L228A and S240A exhibited modest changes in their initial rate kinetics relative to the wild-type enzyme, suggesting that neither Leu228 nor Ser240 play essential roles in substrate binding or catalysis. The mutants Q224M and Q224E exhibited no significant change in KmGTP and KmASP and modest changes in KmIMP relative to the wild-type enzyme. However, kcat decreased 13-fold for the Q224M mutant and 10(4)-fold for the Q224E mutant relative to the wild-type enzyme. Furthermore, the Q224E mutant showed an optimum pH at 6.2, which is 1.5 pH units lower than that of the wild-type enzyme. Tryptophan emission fluorescence spectra of Q224M, Q224E, and wild-type proteins under denaturing conditions indicate comparable stabilities. Mutant Q34E exhibits a 60-fold decrease in kcat compared with that of the wild-type enzyme, which is attributed to the disruption of the Gln34 to Gln224 hydrogen bond observed in crystal structures. Presented here is a mechanism for the synthetase, whereby Gln224 works in concert with Asp13 to stabilize the 6-oxyanion of IMP.  相似文献   

20.
BACKGROUND: The rejection of pig xenografts in humans is initiated by preformed antibodies that may be related to the natural antibodies that formulate a first line of defense against infectious agents. Immunoglobulin gene variable domains encoding the antibodies that react with similar epitopes expressed on xenoantigens and bacteria may share structurally similar antigen-binding site configurations. METHODS: We sequenced the VH immunoglobulin genes and germline progenitors of two rat monoclonal antibodies that recognize pig xenoantigens. Nucleic and amino acid sequences of these xenoantibodies were compared with immunoglobulin genes encoding antibodies that react with bacteria or viruses. RESULTS AND CONCLUSIONS: VH genes encoding rat anti-pig xenoantibodies are expressed in germline configuration and share structural similarities, including identical amino acids in key antigenic contact sites that define antibody canonical structural groups, with antibodies to infectious agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号