首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Thermal Engineering》2007,27(8-9):1352-1362
An experimental study of steady state flow and heat transfer has been conducted for the multiple plate porous insulation used in the reactor pressure vessels of ‘Magnox’ nuclear power stations. The insulation pack studied, consisting of seven dimpled stainless steel sheets and six plane stainless steel sheets, was of the type installed in the Sizewell A plant. A large scale experimental test facility, based on the guarded hot plate method, was used for measuring the effective thermal conductivity of Magnox reactor pressure vessel insulation, which consists of alternate layers of plain steel foil and dimpled foil. The measurements were made both with the fluid within the insulation pack nominally stationary and with an imposed flow through it, simulating leakage through the insulation pack. The experimental conditions corresponded to a heat flux of 75–1000 W/m2, fluid pressures of atmospheric to 5 bar gauge, pack orientations in range of 0°–45° relative to the horizontal, leakage velocities ranging from 0.05 m/s to 0.20 m/s and inlet air bulk temperatures ranging from 18 °C to 290 °C. Local values of effective thermal conductivity of 0.04–0.23 W/m K were obtained for the above experimental conditions. The heat transfer modes in the insulation pack were conduction through the contacting metallic foils, thermal radiation across the gas gaps, and conduction and convection in the air. The effective thermal conductivity of the porous insulation increased with increasing air pressure, inclination angle, and air velocity. Buoyancy effects increased with increasing inclination angle and air pressure.  相似文献   

2.
《Applied Thermal Engineering》2007,27(8-9):1371-1376
A high temperature high lift solid sorption based heat transformer has been successfully designed and tested. The sorption reactor concept is based on a tube-fin heat exchanger where the heat exchanging fluids can flow through the hollow fins. The plates were brazed together with porous metal foam that was impregnated with either of the sorbents, LiCl and MgCl2. The adsorbate is ammonia. The batch system was tested as to the power delivered at high temperatures, 150–200 °C. Peak power at 200 °C was about 0.8 kW, the average power about 0.4 kW. The thermal efficiency, COP, was calculated from the experimental results to be 0.11. This is only 40% of the expected theoretical value and can largely be attributed to the thermal mass of the reactor.  相似文献   

3.
Non-uniform heat flux generated by microchips causes “hot spots” in very small areas on the microchip surface. These hot spots are generated by the logic blocks in the microchip bay; however, memory blocks generate lower heat flux on contrast. The goal of this research is to design, fabricate, and test an active cooling micro-channel heat sink device that can operate under atmospheric pressure while achieving high-heat dissipation rate with a reduced chip-backside volume, particularly for spot cooling applications. An experimental setup was assembled and electro-osmotic flow (EOF) was used thus eliminating high pressure pumping system. A flow rate of 82 μL/min was achieved at 400 V of applied EOF voltage. An increase in the cooling fluid (buffer) temperature of 9.6 °C, 29.9 °C, 54.3 °C, and 80.1 °C was achieved for 0.4 W, 1.2 W, 2.1 W, and 4 W of heating powers, respectively. The substrate temperature at the middle of the microchannel was below 80.5 °C for all input power values. The maximum increase in the cooling fluid temperature due to the joule heating was 4.5 °C for 400 V of applied EOF voltage. Numerical calculations of temperatures and flow were conducted and the results were compared to experimental data. Nusselt number (Nu) for the 4 W case reached a maximum of 5.48 at the channel entrance and decreased to reach 4.56 for the rest of the channel. Nu number for EOF was about 10% higher when compared to the pressure driven flow. It was found that using a shorter channel length and an EOF voltage in the range of 400–600 V allows application of a heat flux in the order of 104 W/m2, applicable to spot cooling. For elevated voltages, the velocity due to EOF increased, leading to an increase in total heat transfer for a fixed duration of time; however, the joule heating also got elevated with increase in voltage.  相似文献   

4.
Experimental investigations were conducted to determine the condensation heat transfer and pressure drop of refrigerant R134a in annular helicoidal pipe at three inclination angles. The experiments were performed with the Reynolds number of R134a ranging from 60 to 200, and that of cooling water from 3600 to 22 000; temperatures of R134a at 30 °C and 35 °C, and cooling water at 16 °C, 20 °C and 24 °C. The experimental results indicated that the refrigerant Nusselt number was larger at lower refrigerant saturation temperature, and would increase with the increase of mass flow rates of refrigerant and cooling water. It was found that the refrigerant heat transfer coefficient of annular helicoidal pipe could be two times larger than that of equivalent plain straight pipe when the refrigerant Reynolds number was larger than 140. Comparison with identical helicoidal pipe with opposite flow channel arrangement revealed that the refrigerant heat transfer rate was larger when the refrigerant was flowing in the annular section at the cooling water Reynolds number larger than 4000, but the pressure drop was always larger in this flow channel arrangement.  相似文献   

5.
The Hybrid Sulfur Process, as well as similar sulfur cycles for the production of nuclear hydrogen, requires the decomposition of sulfuric acid into sulfur dioxide, oxygen, and water at temperatures above 800 °C and at pressures up to 9 MPa. The design of a reactor for this process presents numerous challenges in terms of maintaining small pressure differentials and utilizing currently available materials of construction. This paper focuses on design calculations for a composite reactor that preheats, concentrates, and decomposes sulfuric acid for use in the production of hydrogen. The decomposition reaction takes place within individual tubes of a multitube reactor.  相似文献   

6.
Experimental data are presented which illustrate heat transfer characteristics of the turbulent supercritical flow in vertical circular/non-circular channels. The working fluid was carbon-dioxide operating at a constant pressure of 8 MPa. Experiments were conducted at various conditions with inlet bulk fluid temperatures ranging from 15 to 32 °C, imposed heat fluxes from 3 to 180 kW/m2, and mass fluxes from 209 to 1230 kg/m2 s. The corresponding Reynolds numbers were within the range of 3 × 104 to 1.4 × 105. Wall temperatures are presented for the three channels with different cross-sectional shapes. These were measured by thermocouples installed on the outer surface of the heating section, and are compared with each other at the same heat flux and mass flux conditions.  相似文献   

7.
We report an experimental study on exergetically efficient electronics cooling using hot water as coolant. It is shown that water temperatures as high as 60 °C are sufficient to cool microprocessors with over 90% first law (energy based) efficiency. The chip used in our experiment is kept at temperatures of 80 °C or below so as not to exceed any allowable industrial specifications for maximum microprocessor chip temperature. The use of hot water as coolant will eliminate the requirement for chillers typically used in air-cooled data centers and, therefore, significantly reduce the power consumption. An exergy analysis shows that a six fold rise in second law (exergy based) efficiency is achieved by switching the water inlet temperature from 30 °C to 60 °C. The resulting high exergy at the heat sink outlet is a measure of the potential usefulness of the waste heat of data centers, thereby helping to design data centers with minimal carbon footprint. A new metric for the economic value of the recovered heat, based on costs for electricity and fossil fuels, heat recovery efficiency and an application specific utility function, is introduced to underscore the benefits of hot water cooling. This new concept shows that the economic value of the heat recovered from data centers can be much higher than its thermodynamic value.  相似文献   

8.
In this paper, the experimental results of dryout during flow boiling in minichannels are reported and analysed. Experiments were carried out in vertical circular minichannels with internal diameters of 1.22 mm and 1.70 mm and a fixed heated length of 220 mm. R134a was used as working fluid. Mass flux was varied from 50 kg/m2 s to 600 kg/m2 s and experiments were performed at two different system pressures corresponding to saturation temperatures of 27 °C and 32 °C. Experimental results show that the dryout heat flux increases with mass flux and decreases with tube diameter while system pressure has no clear effect for the range of experimental conditions covered. Finally, the prediction capabilities of the well known critical heat flux (CHF) correlations are also tested.  相似文献   

9.
The present study aims to explore experimentally the influence of elevated inlet fluid temperature on the turbulent forced convective heat transfer effectiveness of using alumina–water nanofluid over pure water in an iso-flux heated horizontal circular tube at a fixed heating power. A copper circular pipe of inner diameter 3.4 mm was used in the forced convection experiments undertaken for the pertinent parameters in the following ranges: the inlet fluid temperature, Tin = 25 °C, 37 °C and 50 °C; the Reynolds number, Rebf = 3000–13,000; the mass fraction of the alumina nanoparticles in the water-based nanofluid formulated, ωnp = 0, 2, 5, and 10 wt.%; and the heating flux, qo = 57.8–63.1 kW/m2. The experimental results clearly indicate that the turbulent forced convection heat transfer effectiveness of the alumina–water nanofluid over that of the pure water can be further uplifted by elevating its inlet temperature entering the circular tube well above the ambient, thereby manifesting its potential as an effective warm functional coolant. Specifically, an increase in the averaged heat transfer enhancement of more than 44% arises for the nanofluid of ωnp = 2 wt.% as the inlet fluid temperature is increased from 25 °C to 50 °C.  相似文献   

10.
This paper presents the surface temperature and voltage distributions on a prismatic lithium-ion battery pack at 1C, 2C, 3C, and 4C discharge rates and 5 °C, 15 °C, 25 °C, and 35 °C boundary conditions (BCs) for water cooling and ~ 22 °C for air cooling methods. It provides quantitative data regarding thermal behaviour of lithium-ion batteries for designing thermal management systems and developing reliable thermal models. In this regard, three large LiFePO4 20 Ah capacity, prismatic batteries are connected in series with four cold plates used between cells and eighteen thermocouples are placed at distributed locations on the principle surface of all three cells: the first six for the first cell, the second six for the second cell, and the third six for the third cell, and the average and peak surface temperatures as well as voltage distributions are measured and presented in this study. In addition, the simulated heat generation rate, temperature and voltage distributions are validated with an experimental data for the above mentioned C-rates and BCs. The present study shows that increasing discharge rates and BCs results in increase in the maximum and average surface temperatures at the three locations (near the anode, cathode, and mid surface of the body). The highest value of the average surface temperature is obtained for 4C and 35 °C BC (36.36 °C) and the lowest value is obtained for 1C and 5 °C BC (7.22 °C) for water cooling method.  相似文献   

11.
Critical heat flux (CHF) and pressure drop of subcooled flow boiling are measured for a microchannel heat sink containing 75 parallel 100 μm × 200 μm structured surface channels. The heated surface is made of a Cu metal sheet with/without 2 μm thickness diamond film. Tests and measurements are conducted with de-ionized water, de-ionized water +1 vol.% MCNT additive solution, and FC-72 fluids over a mass velocity range of 820–1600 kg/m2 s, with inlet temperatures of 15(8.6)°C, 25(13.6)°C, 44(24.6)°C, and 64(36.6)°C for DI water (FC-72), and heat fluxes up to 600 W/cm2. The CHF of subcooled flow boiling of the test fluids in the microchannels is measured parametrically. The two-phase pressure drop is also measured. Both CHF and the two-phase friction factor correlation for one-side heating with two other side-structured surface microchannels are proposed and developed in terms of the relevant parameters.  相似文献   

12.
The common solar water heater system can meet low temperature requirements, but exhibits very low efficiency in attaining higher water temperatures (55–95 °C). In the current paper, a compound parabolic concentrator (CPC)-type solar water heater system experiment rig with a U-pipe was set up, and its performance in meeting higher temperature requirements was investigated. The experiments were conducted in December at Hefei (31°53′ N, 117°15′ E), in the eastern region of China. The system showed steady performance in winter, with overall thermal efficiency always above 43%. The water in the tank was heated from 26.9 °C to 55, 65, 75, 85, and 95 °C. Through the experimental study and exergetic analysis of the solar water heater system, results of the five experiments showed thermal efficiency of above 49.0% (attaining 95 °C water temperature) and exergetic efficiency of above 4.62% (attaining 55 °C water temperature). Based on these results, the CPC-type solar water heater system with a U-pipe shows superior thermal performance in attaining higher temperatures and has potential applications in space heating, heat-powered cooling, seawater desalination, industrial heating, and so on.  相似文献   

13.
《Applied Thermal Engineering》2007,27(13):2195-2199
In this paper, a solid adsorption cooling system with silica gel as the adsorbent and water as the adsorbate was experimentally studied. To reduce the manufacturing costs and simplify the construction of the adsorption chiller, a vacuum tank was designed to contain the adsorption bed and evaporator/condenser. Flat-tube type heat exchangers were used for adsorption beds in order to increase the heat transfer area and improve the heat transfer ability between the adsorbent and heat exchanger fins. Under the standard test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 4.3 kW and a coefficient of performance (COP) for cooling of 0.45 can be achieved. It has provided a specific cooling power (SCP) of about 176 W/(kg adsorbent). With lower hot water flow rates, a higher COP of 0.53 can be achieved.  相似文献   

14.
This paper focuses on evaluation of the optimum cooling water temperature during condensation of saturated water vapor within a shell and tube condenser, through minimization of exergy destruction. First, the relevant exergy destruction is mathematically derived and expressed as a function of operating temperatures and mass flow rates of both vapor and coolant. The optimization problem is defined subject to condensation of the entire vapor mass flow and it is solved based on the sequential quadratic programming (SQP) method. The optimization results are obtained at two different condensation temperatures of 46 °C and 54 °C for an industrial condenser. As the upstream steam mass flow rates increase, the optimal inlet cooling water temperature and exergy efficiency decrease, whereas exergy destruction increases. However, the results are higher for optimum values at a condensation temperature of 54 °C, compared to those when the condensation temperature is 46 °C. For example, when the steam mass flow rate is 1 kg/s and the condensation temperature increases from 46 °C to 54 °C, the optimal upstream coolant temperature increases from 16.78 °C to 25.17 °C. Also, assuming an ambient temperature of 15 °C, the exergy destruction decreases from 172.5 kW to 164.6 kW. A linear dependence of exergy efficiency on dimensionless temperature is described in terms of the ratio of the temperature difference between the inlet cooling water and the environment, to the temperature difference between condensation and environment.  相似文献   

15.
A device is described through which heat flows at different rates depending on the orientation of the temperature gradient. The device consists of two cubic enclosures side by side, one of which is filled with pure water with a temperature of maximum density of 4 °C, and the other which contains a saline solution with a temperature of maximum density of 2 °C. A temperature gradient, which spans both of these temperatures of maximum density, is applied horizontally across the composite system, resulting in different rates of heat transfer through the device depending on the gradient direction. Experiments performed with a 12 ×  6 cm container yield heat transfer rates of 0.55 W and 0.19 W depending on the direction of the temperature gradient, resulting in a rectification factor of 65.4%. Asymmetrical heat transfer rates are also found in composite systems of water and solids when the temperature gradient spans the temperature of maximum density of the water. Results from computational fluid dynamics confirm the experimental results, and are used to investigate the influence of such parameters as temperature gradient and container aspect ratio on the rectification factor.  相似文献   

16.
《Exergy》2002,2(2):113-118
In this study, an exergoeconomic analysis of condenser type parallel flow heat exchangers is presented. Exergy losses of the heat exchanger and investment and operation expenses related to this are determined with functions of steam mass flow rate and water exit temperature at constant values of thermal power of the heat exchanger at 75240 W, cold water mass flow rate and temperature. The inlet temperature of water is 18 °C and exit temperatures of water are varied from 25 °C to 36 °C. The values of temperature and pressure of saturated steam in the condenser are given to be Tcon=47 ° C and Pcon=10.53 kPa. Constant environment conditions are assumed. Annual operation hour and unit price of electrical energy are taken into account for determination of the annual operation expenses. Investment expenses are obtained according to the variation of heat capacity rate and logarithmic mean temperature difference and also heat exchanger dimension determined for each situation. The present analysis is hoped to be useful in determining the effective parameters for the most appropriate exergy losses together with operating conditions and in finding the optimum working points for the condenser type heat exchangers.  相似文献   

17.
This study aims at improving the performance of a waste heat driven adsorption chiller by applying a novel composite adsorbent which is synthesized from activated carbon impregnated by soaking in sodium silicate solution and then in calcium chloride solution. Modeling is performed to analyze the influence of the hot water inlet temperature, cooling water inlet temperature, chilled water inlet temperatures, and adsorption/desorption cycle time on the specific cooling power (SCP) and coefficient of performance (COP) of the chiller system with the composite adsorbent. The simulation calculation indicates a COP value of 0.65 with a driving source temperature of 85 °C in combination with coolant inlet and chilled water inlet temperature of 30 °C and 14 °C, respectively. The most optimum adsorption–desorption cycle time is approximately 360 s based on the performance from COP and SCP. The delivered chilled water temperature is about 9 °C under these operating conditions, achieving a SCP of 380 W/kg.  相似文献   

18.
The paper gives the basic results of experimental investigation of hydrodynamics and heat transfer in heat-absorbing devices of the ITER thermonuclear reactor, which are subjected to one-side heating. The entire array of experimental data is obtained in the following range of parameters of water flow: pressure p = 0.7–2.0 MPa, mass flux G = 340–25,000 kg/(m2 s), inlet water temperature Tin = 15–60 °C. The experiments are performed with turbulent swirl flows of water for twisted tapes with the flow swirl coefficient k = 0.90, 0.66, 0.49, 0.39, 0.25, 0.19, and 0, as well for test sections without a tape. Given in the first part of the paper are the data on pressure drop and single-phase convective heat transfer. Appropriate calculation formulas are derived, which reliably generalize the experimental data.  相似文献   

19.
《Applied Thermal Engineering》2005,25(5-6):941-952
A vapor diffusion model, which takes into account the reduction of droplet temperature during the evaporation process, was used to determine the achievable targets for desalination of seawater at temperatures between 26 °C and 32 °C when the saline water was injected as fine droplets in a low-pressure vaporizer. The temperatures between 26 °C and 32 °C correspond to the warm temperatures of the ocean surface in the tropics. The predictions from the model were verified by a large number of experiments at vacuum pressures between 10 mm and 18 mm mercury. The upper bound of the rate of flow of the saline water in the experiments was 1000 l/h. Typical evaporation time of the droplets was a few hundred milliseconds and this was less than the residence time of the spray provided for in the vaporizer. The yield of fresh water measured in the experiments was between 3% and 4% and matched well with the predictions. Small values of water injection pressures of about 0.1 MPa were found to be adequate when a swirl nozzle, used for garden sprays, was employed. Changes in the height of water injection in the vaporizer did not significantly influence the yield of fresh water.  相似文献   

20.
Heat transfer and pressure drop characteristics of an absorbent salt solution in a commercial plate heat exchanger serving as a solution sub-cooler in the high loop of triple-effect absorption refrigeration cycle was investigated. The main objectives of this research were to establish the correlation equations to predict the heat transfer and pressure drop and to analyze and optimize the operating parameters for use in the design of absorption systems.In order to conduct above studies, a single-pass cross-corrugated ALFA-LAVAL plate heat exchanger, Model PO1-VG, with capacity of 14,650 W (50,000 Btu/h) was used. In order to evaluate the performance, hot solution inlet temperatures from 55 °C (130 °F) to 77 °C (170 °F), and inlet temperature differences from 14 °C (25 °F) to 20 °C (35 °F) were used. The cold side of the heat exchanger was operated to match the equal heat capacity rate of hot side.Based on the empirical models proposed in the literature, a program was developed and experimental data were curve fitted. From the best-fitted curves, the power-law equations for heat transfer and pressure losses were established and the performance was evaluated.In the hot salt solution side, the Reynolds number was varied from 250 to 1100 and the resulting Nusselt number varied from 7.4 to 15.8. The measured overall heat transfer coefficient Uoverall varied from 970 W/m2 °C (170 Btu/h ft2 °F) to 2270 W/m2 °C (400 Btu/h ft2 °F) and the Fanning friction factor in the absorbent side of the heat exchanger varied from 5.7 to 7.6. The correlation equations developed to predict the heat transfer and friction factor perfectly agree with the experimental results. Those equations can be used to predict the performance of any solution with Prandtl numbers between 82 and 174, for heat exchangers with similar geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号