共查询到20条相似文献,搜索用时 15 毫秒
1.
Dulal Pal Hiranmoy Mondal 《International Communications in Heat and Mass Transfer》2011,38(4):463-467
A study has been carried out to analyze the effects of variable thermal conductivity, Soret (thermal-diffusion) and Dufour (diffusion-thermo) on MHD non-Darcy mixed convection heat and mass transfer over a non-linear stretching sheet embedded in a saturated porous medium in the presence of thermal radiation, viscous dissipation, non-uniform heat source/sink and first-order chemical reaction. The governing differential equations transform into a set of non-linear coupled ordinary differential equations using similarity analysis. Similarity equations are then solved numerically using shooting algorithm with Runge-Kutta Fehlberg integration scheme over the entire range of physical parameters. A comparison with previously published work has been carried out and the results are found to be in good agreement. Graphical presentation of the local skin-friction coefficient, the local Nusselt number and the local Sherwood number as well as the temperature profiles show interesting features of the physical parameters. 相似文献
2.
《International Journal of Heat and Mass Transfer》2005,48(21-22):4557-4561
An analysis has been carried out to obtain the nonlinear MHD flow with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq fluid on a vertical stretching surface with chemical reaction and thermal stratification effects. An approximate numerical solution for the flow problem has been obtained by solving the governing equations using numerical technique. A magnetic field is applied transversely to the direction of the flow. Adopting the similarity transformation, governing nonlinear partial differential equations of the problem are transformed to nonlinear ordinary differential equations. Then the numerical solution of the problem is derived using Gill method, for different values of the dimensionless parameters. The results obtained show that the flow field is influenced appreciably by the presence of thermal stratification, chemical reaction and magnetic field. 相似文献
3.
The present article investigates the influence of Joule heating and chemical reaction on magneto Casson nanofluid phenomena in the occurrence of thermal radiation through a porous inclined stretching sheet. Consideration is extended to heat absorption/generation and viscous dissipation. The governing partial differential equations were transformed into nonlinear ordinary differential equations and numerically solved using the Implicit Finite Difference technique. The article analyses the effect of various physical flow parameters on velocity, heat, and mass transfer distributions. For the various involved parameters, the graphical and numerical outcomes are established. The analysis reveals that the enhancement of the radiation parameter increases the temperature and the chemical reaction parameter decreases the concentration profile. The empirical data presented were compared with previously published findings. 相似文献
4.
This paper presents the analytical study of heat and mass transfer in a two-dimensional time-dependent flow of Williamson nanofluid near a permeable stretching sheet by considering the effects of external magnetic field, viscous dissipation, Joule heating, thermal radiation, heat source, and chemical reaction. Suitable transformations are introduced to reformulate the governing equations and the boundary conditions convenient for computation. The resulting sets of nonlinear differential equations are then solved by the homotopy analysis method. The study on the effects of relevant parameters on fluid velocity, temperature, and concentration profiles is analyzed and presented in graphical and tabular forms. Upon comparison of the present study with respect to some other previous studies, a very good agreement is obtained. The study points out that the transfer of heat can substantially be enhanced by decreasing viscoelasticity of the fluid and the transfer of mass can be facilitated by increasing permeability of the stretching sheet. 相似文献
5.
The present study analyzes the effect of chemical reaction on an unsteady magnetohydrodynamic boundary layer viscous fluid over a stretching surface embedded in a porous medium with a uniform transverse magnetic field. A Darcy‐Forchheimer drag force model is employed to simulate the effect of second‐order porous resistance. Dissipative heat energy based on both viscous and Joule dissipation along with a heat source/sink is considered to enhance the energy equation. Similarity analysis is imposed to transform the governing differential equations into a set of nonlinear coupled ordinary differential equations. These sets of equations are solved numerically using the Runge‐Kutta fourth‐order scheme followed by the shooting algorithm. The effects of physical parameters such as magnetic field, Prandtl number, Eckert number, Schmidt number, unsteadiness parameter, and chemical reaction parameters have been discussed on velocity, temperature, and concentration fields. Computation for the coefficient of skin friction, rate of heat and mass transfer is done and presented in a table for validation of the present outcomes. 相似文献
6.
Neelufer Z. Basha Kuppalapalle Vajravelu Fateh Mebarek-Oudina Ioannis Sarris Kanumesh Vaidya Kerehalli V. Prasad Choudhari Rajashekhar 《亚洲传热研究》2022,51(6):5262-5287
The Dufour and Soret impacts on magnetohydrodynamic Carreau nanoliquid past a nonlinearly stretching sheet are investigated. Variations in viscosity, heat conductivity, and convective boundary conditions are considered. Suitable similarity conversions are utilized to design the governing equations nondimensional. The Optimal Homotopy Analysis Method is employed to resolve the dimensionless equations. Graphs and tables are utilized to illustrate the impacts of the relevant factors over velocity, temperature, concentration, and streamlines. For the variations of different parameters, numerical values for Nusselt number, Sherwood number, and skin friction are provided in a table. The observed results are in good agreement with the previous literature findings. Furthermore, the current research shows that when the Dufour number increases, the temperature distributions get narrower. However, with increasing Soret number, the concentration distribution has the opposite effect. One of the important outcomes of the current study is that by increasing the Weissenberg number for shear-thinning fluids, one can improve the velocity field. 相似文献
7.
This article is concerned with the steady laminar magnetohydrodynamic boundary‐layer flow past a stretching surface with uniform free stream and internal heat generation or absorption in an electrically conducting fluid. A constant magnetic field is applied in the transverse direction. A uniform free stream of constant velocity and temperature is passed over the sheet. The effects of free convection and internal heat generation or absorption are also considered. The governing boundary layer and temperature equations for this problem are first transformed into a system of ordinary differential equations using similarity variables, and then solved by a new analytical method and numerical method, by using a fourth‐order Runge–Kutta and shooting method. Velocity and temperature profiles are shown graphically. It is shown that the differential transform method solutions are only valid for small values of independent variables but the results obtained by the DTM‐Padé are valid for the entire solution domain with high accuracy. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21054 相似文献
8.
Parvathi Meruva Poli Chandra Reddy Parakapali Roja Appikatla Leela Ratnam 《亚洲传热研究》2022,51(4):3586-3599
The aim of the present work is to focus on heat and mass transfer characteristics of the magnetohydrodynamic three-dimensional flow of nanofluid over a permeable stretching porous sheet. The significance of this study is the consideration of copper-based and aluminum oxide-based nanofluids. The physical parameters like a chemical reaction, Soret effect, radiation, and heat generation, and radiation absorption being involved in this examination are novel. The nonlinear partial differential equations are transformed into ordinary differential equations by adopting suitable similarity transformations. The numerical solutions are obtained by applying the Runge–Kutta method of fourth-order with the Shooting technique using MATLAB. The results obtained are presented through graphs and tables for various parameters. A comparison with published results has been done to validate the methodology and found good coincidence. It is claimed that the increase in heat generation parameters results in increasing the temperature. With an increase in the Soret effect, the skin friction coefficient along x-axis increases and skin friction coefficient along the y-axis, Nusselt number and Sherwood number decrease. 相似文献
9.
V. Kumaran A.K. BanerjeeA. Vanav Kumar I. Pop 《International Communications in Heat and Mass Transfer》2011,38(3):335-339
In this paper a study is carried out to analyze the unsteady heat transfer effects of viscous dissipation on the steady boundary layer flow past a stretching sheet with prescribed constant surface temperature in the presence of a transverse magnetic field. The sheet is assumed to stretch linearly along the direction of the fluid flow. The assumed initial steady flow and temperature field neglecting dissipation effects becomes transient by accounting dissipation effects when time t′ > 0. The temperature and the Nusselt number are computed numerically using an implicit finite difference method. The obtained steady temperature field with dissipation is of practical importance. 相似文献
10.
Norfifah Bachok Anuar Ishak Ioan Pop 《International Journal of Heat and Mass Transfer》2012,55(7-8):2102-2109
The unsteady boundary layer flow of a nanofluid over a permeable stretching/shrinking sheet is theoretically studied. The governing partial differential equations are transformed into ordinary ones using a similarity transformation, before being solved numerically. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the nanoparticle fraction profiles for some values of the governing parameters, namely, the unsteadiness parameter, the mass suction parameter, the Brownian motion parameter, the thermophoresis parameter, Prandtl number, Lewis number and the stretching/shrinking parameter. It is found that dual solutions exist for both stretching and shrinking cases. The results also indicate that both unsteadiness and mass suction widen the range of the stretching/shrinking parameter for which the solution exists. 相似文献
11.
It is considered that the magnetohydrodynamic free convective flow of an incompressible electrically conducting fluid through a porous medium past a vertical absorbent surface. The homogeneous transverse magnetic field is considered in the existence of heat source and chemical reaction in the rotating frame. The accurate solutions of the velocity, temperature, and concentration are acquired systematically making use of the perturbation method. The consequences of a variety of governing flow parameters on the velocity, temperature, and concentration are analyzed through graphical profiles. Computational outcomes for the skin friction, Nusselt number, and Sherwood number through the tabular format were also examined. 相似文献
12.
The non-uniform heat source/sink effect on the flow and heat transfer from an unsteady stretching sheet through a quiescent fluid medium extending to infinity is studied. The boundary layer equations are transformed by using similarity analysis to be a set of ordinary differential equations containing three parameters: unsteadiness parameter (S), space-dependent parameter (A?) and temperature-dependent parameter (B?) for heat source/sink. The velocity and temperature fields are solved using the Chebyshev finite difference method (ChFD). Results showed that the heat transfer rate, − θ′(0) and the skin friction, − f″(0) increase as the unsteadiness parameter increases whereas decrease as the space-dependent and temperature-dependent parameters for heat source/sink increase. 相似文献
13.
Wen-Ming Zhang Guang Meng Xue-Yong Wei Zhi-Ke Peng 《International Journal of Heat and Mass Transfer》2012,55(23-24):7223-7233
The effects of random surface roughness on slip flow and heat transfer in microbearings are investigated. A three-dimensional random surface roughness model characterized by fractal geometry is used to describe the multiscale self-affine roughness, which is represented by the modified two-variable Weierstrass–Mandelbrot (W–M) functions, at micro-scale. Based on this fractal characterization, the roles of rarefaction and roughness on the thermal and flow properties in microbearings are predicted and evaluated using numerical analyses and simulations. The results show that the boundary conditions of velocity slip and temperature jump depend not only on the Knudsen number but also on the surface roughness. It is found that the effects of the gas rarefaction and surface roughness on flow behavior and heat transfer in the microbearing are strongly coupled. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. In addition, the effects of temperature difference and relative roughness on the heat transfer in the bearing are also analyzed and discussed. 相似文献
14.
《International Journal of Heat and Mass Transfer》2007,50(9-10):1723-1736
This paper investigates the magnetohydrodynamic (MHD) flow and heat transfer characteristics in the presence of a uniform applied magnetic field. The boundary layer flow of a third-order fluid is induced due to linear stretching of a non-conducting sheet. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). The governing non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence of these solutions is discussed. Velocity and temperature distributions are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form. Emphasis has been given to the variations of the emerging parameters such as third-order parameter, magnetic parameter, Prandtl number and the Eckert number. It is noted that the skin friction coefficient decreases as the magnetic parameter or the third grade parameter increases. 相似文献
15.
Manoj Kumar Nayak Vinay Shankar Pandey Dharmendra Tripathi Noreen Sher Akbar Oluwole D Makinde 《亚洲传热研究》2020,49(3):1256-1280
The present study aims to investigate the effects of thermal‐diffusion and diffusion‐thermo onan magnetohydrodynamic convective flow of viscous fluids over an exponentially stretching sheet. Thermal radiation effects are also considered in the study. This analysis is carried out in three dimensions and a similarity transformation is adopted to get a set of ordinary differential equations from a set of partial differential equations. And the Fourth‐order Runge‐Kutta method and shooting technique along with the secant method are employed to find out an iterative solution. We also analyze here the influence of the variable magnetic field, nonuniform permeability and variable chemical reaction on the fluid flow. The impact of various pertinent parameters of interest has extensively been explored through graphs and tables. The major findings of the present study are that resistive Lorentz force diminishes the fluid velocity and uplifts the thermal as well as concentration fields. Inclusion of porous matrix improves the viscous drag force which in turn augments wall shear stresses and peters out the heat and mass transfer rates from the sheet. In addition, the thermal expansion coefficient has an inverse relation with temperature. 相似文献
16.
The numerical solutions of the upper-convected Maxwell (UCM) nanofluid flow under the magnetic field effects over an inclined stretching sheet has been worked out. This model has the tendency to elaborate on the characteristics of “relaxation time” for the fluid flow. Special consideration has been given to the impact of nonlinear velocity slip, thermal radiation and heat generation. To study the heat transfer, the modified Fourier and Fick's laws are incorporated in the modeling process. The mass transfer phenomenon is investigated under the effects of chemical reaction, Brownian motion and thermophoresis. With the aid of the similarity transformations, the governing equations in the ordinary differential form are determined and then solved through the MATLAB's package “bvp4c” numerically. This study also brings into the spotlight such crucial physical parameters, which are inevitable for describing the flow and heat transfer behavior. This has been done through graphs and tables with as much precision and exactitude as is possible. The ascending values of the magnetic parameter, the Maxwell parameter and the angle of the inclined stretching sheet cause decay in the dimensionless velocity while an assisting behavior of the thermal and concentration buoyancy parameters is noticed. 相似文献
17.
18.
The endeavor of this study is to explore the nature of dual solutions (steady and unsteady) for the Casson fluid flow with the simultaneous consequences of both thermal and mass transmissions. The flow passes above an absorbent elongating sheet in the existence of a constant magnetic field. The supported leading equations are remodeled into a set of solvable forms with the assist of suitable similarity variables and hence deciphered utilizing the “MATLAB routine bvp4c scheme.” Due to the sudden changes in the surface with time, the temperature and flow behavior over the sheet also change, and hence dual-type flow solutions exist. Stability scrutiny is implemented to examine the less (more) stable and visually achievable solutions. From this study, we have achieved many interesting facts, among them, we can use magnetic and Casson fluid parameters to control the motion of the fluid and to enlarge of thermal transmission of the fluid. This flow model has many important applications in different physical fields, such as engineering sciences, medical sciences, and different industrial processes. One of the most important results, which has been achieved from this investigation, is that the Prandtl number enriches the heat transfer rate of the fluid at the surface during the time-independent case under the suction environment. Also, the chemical reaction parameter helps to enhance the mass accumulation rate of the fluid in both cases. 相似文献
19.
The effect of viscous dissipation and thermal radiation on mixed convective heat transfer of an MHD Williamson nanofluid past a stretching cylinder in the existence of chemical reaction is analyzed in this study. When energy equation is formulated, the variable thermal conductivity is deliberated. By proposing applicable similarity transformations, nonlinear ordinary differential equations (ODEs) are attained from partial differential equations. These nondimensional ODEs are computed through Runge-Kutta method integrated with shooting method using MATLAB software. The results found numerically are in agreement with that of the published works of similar nature in a limiting case. The results of the local Nusselt number, skin friction coefficient, and Sherwood numbers are organized in tables. The influence of protuberant parameters on temperature, velocity, and concentration is presented by graphs. From the results, it is seen that for higher values of variable thermal conductivity parameter, the local Sherwood number and skin friction coefficient upsurge, whereas the local Nusselt number diminishes. 相似文献
20.
Muttukuru Santhi Kavaturi Venkata Suryanarayana Rao Patakota Sudarsana Reddy Paluru Sreedevi 《亚洲传热研究》2021,50(3):2929-2949
Unsteady magnetohydrodynamic heat and mass transfer analysis of hybrid nanoliquid flow over a stretching surface with chemical reaction, suction, slip effects, and thermal radiation is analyzed in this study. A combination of alumina (Al2O3) and titanium oxide (TiO2) nanoparticles are taken as hybrid nanoparticles and water is considered as the basefluid. Using the similarity transformation method, the governing equations are changed into a system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using the Finite element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of nondimensional rates of heat transfer, mass transfer, and velocity are also analyzed and the results are depicted in tables. Temperature sketches of hybrid nanoliquid intensified in both the steady and unsteady cases as the volume fraction of both nanoparticles rises. 相似文献