首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成.分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响.结果 表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s...  相似文献   

2.
本文提出了一种可视化燃烧室,用于对3种尺寸的随机堆积结构开展过滤燃烧实验,该结构分别由直径为5,10,15 mm的氧化铝颗粒堆积而成。通过搭建燃烧平台,研究了不同颗粒直径堆积床中火焰的燃烧波高度、火焰传播速度、火焰温度及排放特性。结果表明:在可燃工况下,颗粒直径5 mm堆积床中火焰最高温度随火焰传播过程减小,火焰传播速度变快;而在颗粒直径10和15 mm堆积床中火焰最高温度随火焰传播过程增大,火焰传播速度变慢。  相似文献   

3.
为获得氮气稀释气对天然气燃烧特性的影响规律,在定容燃烧反应器中对不同当量比与初始压力下天然气的火焰传播特性、燃烧稳定性及燃烧特性进行了试验测试,并分析了氮气稀释度对天然气火焰传播特性、燃烧稳定性及燃烧特性的影响规律。研究结果表明:随着初始压力与氮气稀释度的升高,火焰前锋面将出现细小裂纹,火核逐渐向定容燃烧反应器上部漂移,火焰稳定性变差;随着初始压力的提高,马克斯坦长度明显变短,火焰稳定性变差,无拉伸火焰传播速度与层流燃烧速度明显降低,但最大燃烧压力显著升高。随着当量比的提高,层流燃烧速度与最大燃烧压力出现先增加后降低的趋势,两者的最大值出现在当量比为1.0时。马克斯坦长度随氮气稀释度的增加逐渐变短,表明火焰逐渐趋于不稳定;同时,无拉伸火焰传播速度、层流燃烧速度与最大燃烧压力随氮气稀释度的增加显著降低。  相似文献   

4.
针对燃用航空煤油的贫预混预蒸发模型燃烧室的振荡燃烧特性开展了实验研究。实验表明:在相同的燃烧室入口空气燃料混合物流速下,随着当量比的增加,燃烧室振荡燃烧的振荡主频从132 Hz增加到144 Hz,但燃烧室的均方根脉动压力幅值却从1 464 Pa下降到342 Pa。在当量比不变情况下,入流空气燃料混合物流速较低时,容易引发振荡燃烧现象,而当入流空气燃料混合物流速较高时,则燃烧会变得稳定。分析了整个燃烧实验装置的前4阶轴向声学模态频率,发现实验中所激励出的振荡燃烧主频和第二阶轴向声学模态频率吻合的很好。  相似文献   

5.
A numerical study on CH4 and air premixed combustion inside a small tube with a temperature gradient at the wall was undertaken to investigate the effects of inlet velocity, equivalence ratio and combustor size on combustion characteristics. The simulation results show that the inlet velocity has a significant influence on the reaction zone, and the flame front shifts downstream as the inlet velocity increases. The results also show that, the inlet velocity has no obvious effects on the flame temperature. The highest flame temperature is obtained if the equivalence ratio is set to 1. It is disclosed that the combustor size strongly influences the combustion characteristics. The smaller the combustor size is, the more difficult it is to maintain the steady combustion. The smallest combustor size that the stable flame can be sustained is determined mainly by the wall temperature of the micro-combustor under the given conditions. The higher the wall temperature is, the smaller the smallest combustor size. Therefore increasing wall temperature is an effective way to realize flame stabilization for a given combustor size.  相似文献   

6.
In this study, the characteristics of hydrogen flame stabilization in porous medium combustor were investigated. The flame was observed in a quartz tube. The porous medium was oxide-bonded silicon carbide (OB-SiC) or aluminum oxide (Al2O3) with 60 PPI and 30 PPI pore size distributions. The results indicated that under a low equivalence operation, the flame would transform from surface combustion to interior combustion with an increased heating value. Under a high equivalence ratio, both interior combustion and flashback transition existed at the same time. The thermal conductivity of silicon carbide is higher than that of aluminum oxide. Thus, interior combustion region was more extensive under a low equivalence ratio operation with a high premixed gas velocity. Flashback was apparent for Al2O3 under high an equivalence ratio with low a premixed gas velocity. Consequently, hydrogen flame stability could be controlled by the pore size distribution and thermal conductivity of the porous media, input heating value and input equivalence ratio.  相似文献   

7.
A reciprocal flow filtration combustor with embedded heat exchangers is numerically studied. In this system the combustion of methane and air mixture is stabilized in a transient porous media combustor by periodical switching the direction of the flow. Two heat exchangers are placed in the terminal sections of the porous matrix, constraining the reaction in the central insulated zone. The predicted temperature profile inside the reactor has a typical trapezoidal shape. The central plateau temperature ranges between 1300 and 1600 K as the equivalence ratio varies from 0.15 to 0.7 and the filtration velocity from 15 to 45 cm/s. The efficiency spans the range of 50-80% being higher for higher equivalence ratios and filtration velocities.  相似文献   

8.
A porous burner stacked in turn with 3‐ and 9‐mm alumina pellets was established to perform C2H4 combustion experiments by acquiring the flammable limits, temperature variation characteristics, combustion wave velocity, pollutant emissions, and treatment efficiency. The burner operated well at equivalence ratios within 0.3 to 0.7. Larger alumina pellets widened the burner's lower flammable limit. As the flame propagated downstream, the higher premixed gas flow velocity and larger alumina pellets, the higher combustion wave velocity, whereas the circumstances were opposite as the flame spread upstream. The combustion temperature increased with the equivalence ratio and premixed gas flow velocity. In response to the effect of the alumina pellet dimension, 3‐mm alumina pellets corresponded to higher combustion temperatures, lower CO emissions, and higher treatment efficiency than those less than 9‐mm conditions.  相似文献   

9.
Experimental and numerical (via ANSYS FLUENT) studies have been conducted on the combustion stability and stabilization mechanisms in a localized stratified vortex-tube combustor (LSVC) under lean conditions. The stability limit and flame configuration were obtained under different combustion conditions. Combined with the flow field distribution, the formation mechanisms of the local stratification of species and the resultant flame configuration were analyzed. Results show that the local stratification peculiarity is responsible for the dual flame appearance. On the basis of the local stratification of species, the local equivalence ratio is close to stoichiometry in the vicinity of the flame front, while it is above 1.0 in the interior, enabling the achievement of stable combustion at a global equivalence ratio as low as 0.12 in the LSVC. The flow field can help the transport of the reactive species and yields an intensified combustion and a large density gradient. The peak heat release rate (HRR) of 0.5 W/mm3 in the LSVC is much higher than that of 0.1 W/mm3 in the rapidly mixed vortex-tube combustor (RMVC) at the global equivalence ratio of 0.6 and the maximum tangential velocity of 26.44 m/s. The flame–vortex interaction theory provides a new perspective to interpret the rapid flame propagation in vortex-tube combustors. Based on the pressure jump theory, the flame speed was obtained via a specific formula closely related to the density gradient and the injection velocity. It turns out that the flame speed in the LSVC is remarkably higher than that in the RMVC at a certain same combustion condition. Moreover, the decrease of local flow velocity resulted from the strong swirl provides a favorable guarantee for the balance with the local flame speed.  相似文献   

10.
针对生物柴油与醇类混合燃料燃烧机理研究的需求,采用高速纹影光学诊断方法和定容燃烧弹系统试验研究了异丁醇/辛酸甲酯混合燃料的预混层流燃烧特性。测量了不同当量比和初始压力条件下的不同配比混合燃料—空气预混合气的层流燃烧火焰速度,火焰拉伸率以及马克斯坦长度。分析了燃烧初始条件及异丁醇掺混比例对混合燃料的无拉伸层流燃烧速度及火焰不稳定性的影响规律。结果表明:异丁醇/辛酸甲酯混合燃料的拉伸层流火焰传播速度和层流火焰燃烧速度随着当量比的增加先增加后减少,随着初始压力的增加而减小;马克斯坦长度随着当量比和初始压力的增加而减小;异丁醇掺混比例的增加加快了层流火焰燃烧速度,但使得火焰的不稳定性倾向增加。  相似文献   

11.
A numerical investigation of the different arrangements of porous media in a combustor with annular heat recirculation is conducted.The effect of annular heat recirculation and porous block arrangement on the characteristics of combustion wave propagation is numerically studied.Results show that power input,heat capacity of porous matrix,arrangement of porous blocks,and annular heat recirculation are major factors that influence the propagation of combustion wave.The overall temperature of ceramic porous burner is higher than that of ceramic-metal type burner due to the lower heat storage capacity of the former,especially for the temperature downstream.The flame temperature is higher upstream and lower downstream with metal foams in the annulus than that without metal foams.The flame temperature of uniformity type burner is more uniform than that of gradually-varied and modular type burners.The flame front moves more slowly with metal foams in the annulus than that without metal foams due to the better preheating effect of metal foams.The flame position moves downstream,and the flame temperature gradually decreases and is eventually extinguished due to the low preheating temperature.  相似文献   

12.
The appearance of the squish flame is of great significance to accelerate burning progress and improve the combustion efficiency. In this paper, we experimentally studied the characteristics of the squish flame in a cylindrical constant volume vessel under different initial pressures and equivalence ratios by using high-speed schlieren photometry. Due to the compression of the main flame front, “squish flow” was induced in the analogous triangular vertebrae region besieged by the convex flame front, the concave wall and the flat optical windows, which provided the perturbation of large wavelength to promote the appearance of the squish flame. When the squish flames occur, as the initial pressure increases, the main flame propagation distance becomes shorter, the main flame propagation velocity increases first and then gradually saturates to a certain value; as the equivalence ratio increases, the main flame propagation distance becomes longer, the main flame propagation velocity rises first and then declines, and the maximum is obtained in the vicinity of Φ = 1.0. There exists a critical initial pressure at each equivalence ratio below which no squish flame appears, and it takes on a U-shaped trend with the increase of equivalence ratio. The hydrodynamic instability plays a key role in the formation of the squish flame. The squish flame tends to appear at higher hydrodynamic instability. The formation mechanism and the critical feature of the squish flame obtained in this paper can provide a theoretical guide to achieve fast controllable combustion.  相似文献   

13.
Flame stabilization mechanisms of a hydrogen-fueled laboratory model scramjet combustor are numerically studied. The combustor consists of a sonic fuel jet injected paralleling into a supersonic air flow at the base of a wedge-shaped strut. The numerical calculations are based on an Open Source Field Operation and Manipulation (OpenFOAM) solver using the large eddy simulation method. A skeletal mechanism for hydrogen-air chemistry including 9 species 27 reactions is used to depict the combustion dynamics. Three cases with air stagnation temperature of 568 K, 460 K, and 960 K, are respectively studied under the same equivalence ratio and entrance Mach number. Damköler number based on the subgrid turbulent mixing time scale and the instantaneous chemical time scale is used to distinguish the role of mixture self-igniting from flame propagation in different air inflows. Flame stabilization in such strut-based combustor is compared with that of cavity-based one. It is found that the basic working principles for the two types of combustor are similar. However, the strut shows more simplicity in flame stabilization locations.  相似文献   

14.
Flame propagation of premixed natural gas–hydrogen–air mixtures was studied in a constant volume combustion bomb. Laminar burning velocities and mass burning fluxes were obtained under various hydrogen fractions and equivalence ratios with various initial pressures, while flame stability and their influencing factors (Markstein length, density ratio and flame thickness) were obtained by analyzing the flame images at various hydrogen fractions, initial pressures and equivalence ratios. The results show that hydrogen fraction, initial pressure as well as equivalence ratio have combined influence on both unstretched laminar burning velocity and flame instability. Meanwhile, according to flame propagation pictures taken by the high speed camera, flame stability decreases with the increase of initial pressures; for given equivalence ratio and hydrogen fraction, flame thickness is more sensitive to the variation of the initial pressure than to that of the density ratio.  相似文献   

15.
Flame dynamics and statistics of mixed supersonic and subsonic combustion modes under different air inflow and global equivalence ratio conditions in a hydrogen-fueled model combustor are numerically studied. Three methods including spanwise-averaged Mach number, spanwise-averaged Mach number conditioning on the local heat release, and fraction of heat release are proposed to identify supersonic and subsonic combustion modes. The probability distributions of supersonic and subsonic combustion modes are also analyzed based on the statistics on multiple instantaneous snapshots of the numerical results. The critical global equivalence ratio for thermal choking in a range of supersonic inflow conditions is derived theoretically based on a one-dimensional duct flow with heat addition. Furthermore, it is found that the flame lift-off distance in both supersonic and subsonic flows decreases with increased air inflow velocity, but increases with global equivalence ratio. The fraction of supersonic heat release and its oscillation increase with increased air inflow velocity.  相似文献   

16.
The study on induced accelerated combustion of premixed hydrogen-air in a confined environment is of great significance for the efficient utilization of hydrogen energy in internal combustion engines. The accelerated flame induced by the orifice plate is more stable and easy to control, which is beneficial to achieve controlled and rapid turbulent combustion. In this work, the accelerated combustion process induced by the orifice plate, and the influence of the orifice structure and initial conditions on the flame propagation and combustion characteristics were investigated by constant volume combustion bomb and schlieren method. The results show that the combustion process induced by the orifice plate consists of three stages: the initial stage of propagation, the accelerated stage of the orifice plate, and the end combustion stage. The reduction in aperture induces greater turbulence intensity and increases the perturbation of the orifice plate to the flame, resulting in a substantial increase in flame propagation speed through the orifice plate. As the initial pressure and the equivalence ratio increase, the velocity of turbulent flame induced by the orifice plate and the change rate of the velocity before and after the orifice plate increase. As the initial temperature increases, the turbulent flame propagation velocity does not change much, and the velocity change rate before and after the orifice plate decreases. The effect of the initial conditions on flame acceleration induced by the orifice plate is essentially the influence of flame propagation speed and instability. The greater the flame propagation speed and the stronger the flame instability, the stronger the induced turbulence and the greater the influence of the turbulent flow disturbance, and the greater the velocity of the turbulent flame induced by the orifice plate. There exists an optimum aperture for the shortest combustion duration at any initial conditions, but the optimal diameter is not sensitive to changes in initial conditions. The effect of orifice-induced combustion acceleration is remarkable, and the combustion durations induced by each orifice plate are shortened by more than 50%.  相似文献   

17.
Micro-combustor is a portable power device that can provide energy efficiently, heat recirculating is considered to be an important factor affecting the combustion process. For enhancing the heat recirculating and improving the combustion stability, we proposed a heat-recirculating micro-combustor embedded with porous media, and the numerical simulation was carried out by CFD software. In this paper, the effect of porous media materials, thickness and inlet conditions (equivalence ratio, inlet velocity) on the temperature distribution and exhaust species in the micro combustor are investigated. The results showed that compared with the micro combustor without embedded porous media (MCNPM), micro-combustor embedded with porous media (MCEPM) can improve the temperature uniformity distribution in the radial direction and strengthen the preheating capacity. However, it is found that the embedding thickness of porous media should be reasonably arranged. Setting the thickness of porous media to 15 mm, the combustor can obtain excellent comprehensive capacity of steady combustion and heat recirculating. Compared the thermal performance of Al2O3, SiC, and ZrO2 porous media materials, indicating that SiC due to its strong thermal conductivity, its combustion stabilization and heat recirculating capacity are obviously better than that of Al2O3 and ZrO2. With the porous media embedded in the micro combustor, the combustion has a tempering limit of more than 10 m/s, and the flame is blown out of the porous media area over 100 m/s. The reasonable equivalence ratio of CH4/air combustion should be controlled within the range of 0.1–0.5, and “super-enthalpy combustion” can be realized.  相似文献   

18.
In this paper, conversion of methane to hydrogen within a porous media reactor was investigated over the fuel-rich equivalence ratio range of 1.5 to 5. Experimental data were taken to validate the computational model and good agreement was established between the two. The characteristics of interest were wave velocity, peak combustion temperature, flame structure, volumetric heat release, wave thickness, and hydrogen yield. The parameters investigated that affect these characteristics included inlet velocity, equivalence ratio, and the thermal conductivity and the specific heat of the porous media. The computational model predicted a peak percentage conversion of methane to hydrogen of approximately 59% while experimental results show a peak of approximately 73%. The model also predicted the experimental trend that conversion efficiency increases as the inlet velocity of the initial fuel-air mixture increases. Species profiles obtained from the computational model showed the signature dual-reforming regimes known as partial oxidation and steam reforming inherent with fuel-rich filtration combustion. The main contribution of this paper is an understanding of the transient nature of the combustion wave for fuel-rich conditions and how the nature of the combustion wave influences conversion efficiency. As the combustion wave progresses, the steam-reforming zone thickness increases, resulting from the constant heat addition to the solid. A thick, high-temperature zone, which promotes steam reforming and is heavily dependent upon the specific heat of the porous media, is preferred to maximize conversion efficiency.  相似文献   

19.
为研究贫预混预蒸发(LPP)燃烧室振荡燃烧规律和LPP火焰结构,利用动态压力传感器测量了LPP燃烧室内不同进气参数下时域及频域上的压力脉动;利用激光诱导荧光(PLIF)测量系统研究了不同进气参数下的LPP火焰结构变化规律。结果表明:随着燃烧室入口流速的增加,激励出的振荡燃烧的当量比区域会减小;在一定的入口流速下,所激励的振荡燃烧主频会随着当量比的增加而增加;随着燃烧室入口空气温度的提高,激励出振荡燃烧的区域会减小,激励出的振荡燃烧的强度会下降,但振荡燃烧的主频均会增加;稳定燃烧时,LPP火焰为V型火焰;振荡燃烧则会将LPP火焰转化为平整型火焰。  相似文献   

20.
This paper investigated the effects of hydrogen addition to gasoline surrogates fuel-air mixture on the premixed spherical flame laminar combustion characteristics. The experiments were carried out by high speed Schlieren photography on a constant-volume combustion vessel. Combining with nonlinear fitting technique, the variation of flame propagation speed, laminar burning velocity, Markstein length, flame thickness, thermal expansion coefficient and mass burning flux were studied at various equivalence ratios (0.8–1.4) and hydrogen mixing ratios (0%–50%). The results suggested that the nonlinear fitting method had a better agreement with the experimental data in this paper and the flame propagation was strongly effected by stretch at low equivalence ratios. The stretched propagation speed increased with the increase of hydrogen fraction at the same equivalence ratio. For a given hydrogen fraction, Markstein length decreased with the increase of equivalence ratio; flame propagation speed and laminar burning velocity first increased and then decreased with the increase of equivalence ratio while the peaks of the burning velocity shifted toward the richer side with the increase of hydrogen fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号