首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical study of transient natural convection heat transfer of aqueous nanofluids in a horizontal annulus between two coaxial cylinders is presented. The effective thermophysical properties of water in the presence of copper oxide nanoparticles with four different volume fractions are predicted using existing models, in which the effects of the Brownian motion of nanoparticles are taken into consideration. The predicted development of convective flow and heat transfer of nanofluids is presented by means of the average Nusselt number over the outer cylinder. The flow development time towards a steady state and the time-averaged Nusselt number are predicted and scaled with Rayleigh number. It is shown that at constant Rayleigh numbers, the time-averaged Nusselt number is gradually lowered as the volume fraction of nanoparticles is increased. In addition, the time-averaged Nusselt number will be overestimated if the Brownian motion effects are not considered.  相似文献   

2.
A numerical study of transient natural convection of liquid gallium (Pr = 0.023) from a horizontal triangular cylinder to its coaxial cylindrical enclosure is performed. The aspect ratio is fixed at 2 and two positions of the inner triangular cylinder are considered. The development of the convective flow and heat transfer is shown via the time histories of the average Nusselt number over the outer circular wall for various Grashof numbers. Temporal phases of the flow development are identified as: initializing, developing, transitioning, and steady/quasi-steady state or oscillating. Typical flow patterns and temperature distributions at these phases are presented by means of streamlines and isotherms, respectively. Pitchfork bifurcation is present for both positions of the inner triangular cylinder when Gr ? 5 × 104. The time-averaged Nusselt number over the outer circular cylinder, the flow development time, and the onset time of pitchfork bifurcation are predicted and scaled with the Grashof number. It is found that the time-averaged Nusselt number is apparently increased by horizontally placing the top side of the inner triangular cylinder for Gr ? 1 × 105.  相似文献   

3.
Transient natural convection heat transfer of aqueous nanofluids in a differentially heated square cavity is investigated numerically. The effective thermal conductivity and dynamic viscosity of nanofluids are predicted by using the proposed models that take the contribution of Brownian motion of nanoparticles into account. Three different Rayleigh numbers and five different volume fractions of nanoparticles are considered. The development of natural convection is presented through the evolutions of the average Nusselt number along the cold side wall. The predicted flow development times and time-averaged Nusselt numbers are scaled with Rayleigh number. In addition, the time-averaged Nusselt numbers are presented in terms of volume fraction of nanoparticles. It is shown that at constant Rayleigh numbers, the time-averaged Nusselt number is lowered with increasing volume fraction of nanoparticles.  相似文献   

4.
Transient natural convective heat transfer of liquid gallium, which has a Prandtl number of 0.023 at 310 K, from a heated horizontal circular cylinder to its coaxial triangular enclosure is studied numerically by employing the control volume method. Two orientations of the triangular cylinder are investigated and the Grashof number is varied from 104 to 107. Development of natural convection is presented by means of the evolutions of the average Nusselt number over the outer triangular wall. Temporal stages during the course of development are identified and demonstrated through representative snapshots of streamlines and isotherms. The time-averaged Nusselt number is scaled with Grashof number for both conduction- and convection-dominated regimes. It is found that by placing horizontally the top side of the triangular cylinder, the convective flow becomes more stable and the overall heat transfer is enhanced. In addition, pitchfork bifurcation is explored quantitatively and its onset times are predicted as well.  相似文献   

5.
Convective heat transfer and friction factor characteristics of water/propylene glycol (70:30% by volume) based CuO nanofluids flowing in a plain tube are investigated experimentally under constant heat flux boundary condition. Glycols are normally used as an anti-freezing heat transfer fluids in cold climatic regions. Nanofluids are prepared by dispersing 50 nm diameter of CuO nanoparticles in the base fluid. Experiments are conducted using CuO nanofluids with 0.025%, 0.1% and 0.5% volume concentration in the Reynolds numbers ranging from 1000 < Re < 10000 and considerable heat transfer enhancement in CuO nanofluids is observed. The effect of twisted tape inserts with twist ratios in the range of 0 < H/D < 15 on nanofluids is studied and further heat transfer augmentation is noticed. The increment in the pressure drop in the CuO nanofluids over the base fluid is negligible but the experimental results have shown a significant increment in the convective heat transfer coefficient of CuO nanofluids. The convective heat transfer coefficient increased up to 27.95% in the 0.5% CuO nanofluid in plain tube and with a twisted tape insert of H/D = 5 it is further increased to 76.06% over the base fluid at a particular Reynolds number. The friction factor enhancement of 10.08% is noticed and increased to 26.57% with the same twisted tape, when compared with the base fluid friction factor at the same Reynolds number. Based on the experimental data obtained, generalized regression equations are developed to predict Nusselt number and friction factor.  相似文献   

6.
The behavior of nanofluids is investigated numerically in an inclined lid-driven triangular enclosure to gain insight into convective recirculation and flow processes induced by a nanofluid. The present model is developed to examine the behavior of nanofluids taking into account the solid volume fraction δ. Fluid mechanics and conjugate heat transfer, described in terms of continuity, linear momentum and energy equations, were predicted by using the Galerkin finite element method. Comparisons with previously published work on the basis of special cases are performed and found to be in excellent agreement. Numerical results are obtained for a wide range of parameters such as the Richardson number, and solid volume fraction. Copper–water nanofluids are used with Prandtl number, Pr = 6.2 and solid volume fraction δ is varied as 0%, 4%, 8% and 10%. The streamlines, isotherm plots and the variation of the average Nusselt number at the hot surface as well as average fluid temperature in the enclosure are presented and discussed in detailed. It is observed that solid volume fraction strongly influenced the fluid flow and heat transfer in the enclosure at the three convective regimes. Moreover, the variation of the average Nusselt number and average fluid temperature in the cavity is linear with the solid volume fraction.  相似文献   

7.
Mixed convection heat transfer from arrays of discrete heat sources inside a horizontal channel has been investigated experimentally. Each of the lower and upper surfaces of the channel was equipped with 8 × 4 flush mounted heat sources subjected to uniform heat flux. Sidewalls, lower and upper walls are insulated and adiabatic. The experimental parametric study was made for aspect ratios of AR = 2, 4 and 10, at various Reynolds and Grashof numbers. From the experimental measurements, row-average surface temperature and Nusselt number distributions of the discrete heat sources were obtained and effects of Reynolds and Grashof numbers on these numbers were investigated. From these results, the buoyancy affected secondary flow and the onset of instability have been discussed. Results show that top and bottom heater surface temperatures increase with increasing Grashof number. The top heater average-surface temperatures for AR = 2 are greater than those of bottom ones. For high values of Grashof numbers where natural convection is the dominant heat transfer regime (Gr1/Re2  1), temperatures of top heaters can have much greater values. The variation of the row-average Nusselt numbers for the aspect ratio of AR = 4, show that with the increase in the buoyancy affected secondary flow and the onset of instability, values of Nusselt number level off and even rise as a result of heat transfer enhancement especially for low Reynolds numbers.  相似文献   

8.
CuO–water nanofluids were prepared from non-spherical CuO nanoparticles by dispersing them in water through the aid of ultrasonication along with the use of Tiron as dispersant. Thermal conductivity enhancements of 13% and 44% have been obtained with 0.016 vol% CuO–water nanofluids at 28 °C and 55 °C respectively, which could be attributed to the high aspect ratio and Brownian motion of nanoparticles. Correlations have been developed to predict the influence of temperature (28–55 °C) and nanoparticles volume concentration (<0.016 vol%) on relative viscosity and thermal conductivity ratio. The results indicate the potential of this nanofluid for thermal management applications.  相似文献   

9.
Mixed convection heat transfer in a top and bottom heated rectangular channel with discrete heat sources has been investigated experimentally for air. The lower and upper surfaces of the channel were equipped with 8 × 4 flush-mounted heat sources subjected to uniform heat flux. Sidewalls, the lower and upper walls were insulated and adiabatic. The experimental study was made for an aspect ratio of AR = 6, Reynolds numbers 955  ReDh  2220 and modified Grashof numbers Gr* = 1.7 × 107 to 6.7 × 107. From experimental measurements, surface temperature and Nusselt number distributions of the discrete heat sources were obtained for different Grashof numbers. Furthermore, Nusselt number distributions were calculated for different Reynolds numbers. Results show that surface temperatures increase with increasing Grashof number. The row-averaged Nusselt numbers first decrease with the row number and then, due to the increase in the buoyancy affected secondary flow and the onset of instability, they show an increase towards the exit as a result of heat transfer enhancement.  相似文献   

10.
In this paper, a numerical investigation on heat transfer performance and flow fields of different nanofluids flows through elliptic annulus in a laminar and turbulent flow regimes. The three-dimensional continuity, Navier–Stokes and energy equations are solved by using finite volume method (FVM) and the SIMPLE algorithm scheme is applied to examine the effects of laminar and turbulent flow on heat transfer characteristics. This study evaluates the effects of four different types of nanoparticles, Al2O3, CuO, SiO2 and ZnO, with different volume fractions (0.5–4%) and diameters (25–80 nm) under constant heat flux boundary condition using water as a base fluid were used. The Reynolds number of laminar flow was in the range of 200  Re  1500, while for turbulent flow it was in the range of 4000  Re  10,000. The results have shown that SiO2–water nanofluid has the highest Nusselt number, followed by ZnO–water, CuO–water, Al2O3–water, and lastly pure water. The Nusselt number for all cases increases with the volume fraction but it decreases with the rise in the diameter of nanoparticles. In all configurations, the Nusselt number increases with Reynolds number. It is found that the glycerine–SiO2 shows the best heat transfer enhancement compared with other tested base fluids.  相似文献   

11.
12.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

13.
Convective heat transfer coefficient and friction factor of nanofluids in rectangular microchannels were measured. An integrated microsystem consisting of a single microchannel on one side, and two localized heaters and five polysilicon temperature sensors along the channel on the other side were fabricated. Aluminum dioxide (Al2O3) with diameter of 170 nm nanofluids with various particle volume fractions were used in experiments to investigate the effect of the volume fraction of the nanoparticles to the convective heat transfer and fluid flow in microchannels. The convective heat transfer coefficient of the Al2O3 nanofluid in laminar flow regime was measured to be increased up to 32% compared to the distilled water at a volume fraction of 1.8 volume percent without major friction loss. The Nusselt number measured increases with increasing the Reynolds number in laminar flow regime. The measured Nusselt number which turned out to be less than 0.5 was successfully correlated with Reynolds number and Prandtl number based on the thermal conductivity of nanofluids.  相似文献   

14.
In the present investigation nanofluids containing CuO and Al2O3 oxide nanoparticles in water as base fluid in different concentrations produced and the laminar flow convective heat transfer through circular tube with constant wall temperature boundary condition were examined. The experimental results emphasize that the single phase correlation with nanofluids properties (Homogeneous Model) is not able to predict heat transfer coefficient enhancement of nanofluids. The comparison between experimental results obtained for CuO / water and Al2O3 / water nanofluids indicates that heat transfer coefficient ratios for nanofluid to homogeneous model in low concentration are close to each other but by increasing the volume fraction, higher heat transfer enhancement for Al2O3 / water can be observed.  相似文献   

15.
Heat transfer enhancement technologies play an important role in research and industrial fields; thus, they have been widely applied to many applications as in refrigeration, automotive, aerospace, and process industry. For example, heat transfer can be passively enhanced by increasing the thermal conductivity of the working fluids, adopting nanofluids, or actively by employing impinging jets.In this paper a numerical analysis on confined impinging slot jets working with pure water or water/Al2O3 based nanofluids is presented. The flow is laminar and a constant uniform temperature is applied on the target surface. The single-phase model approach has been adopted in order to describe the nanofluid behavior and different particle volume concentrations have been considered. Moreover, simulations have been performed for different geometric ratios in order to take into account the confining effects and Reynolds numbers. The behavior of the system has been analyzed in terms of average and local convective heat transfer coefficient, Nusselt number, and required pumping power profiles. Correlations for stagnation point and average Nusselt number for 100  Re  400, 0%  ϕ  5% and 4  H/W  10 are provided.  相似文献   

16.
Extensive numerical results on the flow and thermal fields are presented for free convection from a semi-circular cylinder (flat base upward) immersed in quiescent power-law fluids for the following ranges of conditions: Grashof number, 10 ? Gr ? 105, Prandtl number, 0.72 ? Pr ? 100, and power-law index, 0.2 ? n ? 1.8. The heat transfer characteristics are analyzed in terms of the isotherm patterns, local and average Nusselt number as functions of the pertinent dimensionless parameters. The flow field is visualized in terms of the streamline patterns adjacent to the surface of the cylinder for a range of values of the Grashof number, Prandtl number and power-law index. A separated flow region forms at as low values of the Prandtl number as Pr = 0.72 for n ? 1 (Newtonian and shear-thickening fluids); whereas for shear-thinning fluids (n < 1), the flow remains attached to the cylinder surface over the range of conditions encompassed here. The bubble size grows with Grashof number and it shrinks with Prandtl number. In order to quantify the deviation from the Newtonian behaviour, the normalized values of average Nusselt number are analyzed as a function of the power-law index. In addition, a correlation is proposed for average Nusselt number as a function of the Grashof number, Prandtl number and power-law index. In general terms, shear-thinning fluid behaviour enhances heat transfer whereas shear-thickening has adverse influence on it.  相似文献   

17.
A numerical study has been carried out to analyze the effects of mixed convective flow over a three-dimensional cavity that lies at the bottom of a horizontal channel. The vertical walls of the cavity are isothermal and all other walls are adiabatic. The cavity is assumed to be cubic in geometry and the flow is laminar and incompressible. A direct numerical simulation is undertaken to investigate the flow structure, the heat transfer characteristics and the complex interaction between the induced stream flow at ambient temperature and the buoyancy-induced flow from the heated wall over a wide range of the Grashof number (103–106) and two Reynolds numbers Re = 100 and 1000. The computed thermal and flow fields are displayed and discussed in terms of the velocity fields, streamlines, the temperature distribution and the averaged Nusselt number at the heated and cooled walls. It is found that the flow becomes stable at moderate Grashof number and exhibit a three-dimensional structure, while for both high Reynolds and Grashof numbers the mixed convection effects come into play, push the recirculating zone further upstream and the flow becomes unsteady with Kelvin–Helmholtz instabilities at the shear layer.  相似文献   

18.
Magnetoconvection of an electrically conducting fluid in a square cavity with partially thermally active vertical walls is investigated numerically. The active part of the left side wall is at a higher temperature than the active part of the right side wall. The top, bottom and the inactive parts of the side walls are thermally inactive. Nine different combinations of the relative positions of the active zones are considered. The governing equations are discretized by the control volume method with QUICK scheme and solved numerically by SIMPLE algorithm for the pressure–velocity coupling together with underrelaxation technique. The results are obtained for Grashof numbers between 104 and 106, Hartmann numbers between 0 and 100 and Prandtl numbers 0.054–2.05. The heat transfer characteristics are presented in the form of streamlines and isotherms. The heat transfer rate is maximum for the middle–middle thermally active locations while it is poor for the top–bottom thermally active locations. The average Nusselt number decreases with an increase of Hartmann number and increases with an increase of Grashof number. For sufficiently large magnetic field Ha = 100 the convective mode of heat transfer is converted into conductive mode in the low region of Grashof number than in the high region.  相似文献   

19.
This work focuses on the study of natural convection heat transfer characteristics in a differentially-heated enclosure filled with a CuO–EG–Water nanofluid for different published variable thermal conductivity and variable viscosity models. The problem is given in terms of the vorticity–stream function formulation and the resulting governing equations are solved numerically using an efficient finite-volume method. Comparisons with previously published work are performed and the results are found to be in good agreement. Various results for the streamline and isotherm contours as well as the local and average Nusselt numbers are presented for a wide range of Rayleigh numbers (Ra = 103–105), volume fractions of nanoparticles (0  φ  6%), and enclosure aspect ratios (½  A  2). Different behaviors (enhancement or deterioration) are predicted in the average Nusselt number as the volume fraction of nanoparticles increases depending on the combination of CuO–EG–Water variable thermal conductivity and viscosity models employed. In general, the effects the viscosity models are predicted to be more predominant on the behavior of the average Nusselt number than the influence of the thermal conductivity models. The enclosure aspect ratio is predicted to have significant effects on the behavior of the average Nusselt number which decreases as the enclosure aspect ratio increases.  相似文献   

20.
This work concerns with the study of natural convection heat transfer in rectangular cavities with an inside oval-shaped heat source filled with Fe3O4/water nanofluid. The finite element method is employed to solve the governing equations for this problem. Average Nusselt numbers are presented for a wide range of Rayleigh number (103  Ra  105), volume fraction of nanoparticles (0  ϕ  14%), and four different size and shapes of the heat source. Depending on concentration of the nanoparticle, geometry of the heat source, and the value of Rayleigh number different behaviors are monitored for average Nusselt numbers. Configuration of the heat source dictates a significant change on the behavior of the average Nusselt number, while addition of the nanoparticles has a negative effect on the magnitude of Nusselt number for this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号