首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

2.
Reducing methanol crossover from the anode to cathode in direct methanol fuel cells (DMFCs) is critical for attaining high cell performance and fuel utilization, particularly when highly concentrated methanol fuel is fed into DMFCs. In this study, we present a novel design of anode diffusion media (DM) wherein spatial variation of hydrophobicity along the through-plane direction is realized by special polytetrafluoroethylene (PTFE) coating procedure. According to the capillary transport theory for porous media, the anode DM design can significantly affect both methanol and water transport processes in DMFCs. To examine its influence, three different membrane-electrode assemblies are fabricated and tested for various methanol feed concentrations. Polarization curves show that cell performance at high methanol feed concentration conditions is greatly improved with the anode DM design with increasing hydrophobicity toward the anode catalyst layer. In addition, we investigate the influence of the wettability of the anode microporous layer (MPL) on cell performance and show that for DMFC operation at high methanol feed concentration, the hydrophilic anode MPL fabricated with an ionomer binder is more beneficial than conventional hydrophobic MPLs fabricated with PTFE. This paper highlights that controlling wetting characteristics of the anode DM and MPL is of paramount importance for mitigating methanol crossover in DMFCs.  相似文献   

3.
It is desirable to operate a direct methanol fuel cell (DMFC) with neat methanol to maximize the specific energy of the DMFC system, and hence increasing its runtime. A way to achieve the neat-methanol operation is to passively transport the water produced at the cathode through the membrane to the anode to facilitate the methanol oxidation reaction (MOR). To achieve a performance of the MOR similar to that under the conventional diluted methanol operation, both the water transport rate and the local water concentration in the anode catalyst layer (CL) are required to be sufficiently high. In this work, a thin layer consisting of nanosized SiO2 particles and Nafion ionomer (referred to as a water retention layer hereafter) is coated onto each side of the membrane. Taking advantage of the hygroscopic nature of SiO2, the cathode water retention layer can help maintain the water produced from the cathode at a higher concentration level to enhance the water transport to the anode, while the anode retention layer can retain the water that is transported from the cathode. As a result, a higher water transport rate and a higher water concentration at the anode CL can be achieved. The formed membrane electrode assembly (MEA) with the added water retention layers is tested in a passive DMFC and the results show that this MEA design yields a much higher power density than the MEA without water retention layers does.  相似文献   

4.
Mass balance research in direct methanol fuel cells (DMFCs) provides a more practical method in characterizing the mass transport phenomena in a membrane electrode assembly (MEA). This method can be used to measure methanol utilization efficiency, water transport coefficient (WTC), and methanol to electricity conversion rate of a MEA in DMFCs. First, the vital design parameters of a MEA are recognized for achieving high methanol utilization efficiency with increased power density. In particular, the structural adjustment of anode diffusion layer by adding microporous layer (MPL) is a very effective way to decrease WTC with reduced methanol crossover due to the mass transfer limitation in the anode. On the other hand, the cathode MPL in the MEA design can contribute in decreasing methanol crossover. The change of structure of cathode diffusion layer is also found to be a very effective way in improving power density. In contrast, the WTC of DMFC MEAs remains virtually constant in the range of 3.4 and 3.6 irrespective of the change of the cathode GDL. The influence of operating condition on the methanol utilization efficiency, WTC, and methanol to electricity conversion rate is also presented and it is found that these mass balance properties are strongly affected by temperature, current density, methanol concentration, and the stoichiometry of fuel and air.  相似文献   

5.
6.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

7.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Water management is an important challenge in portable direct methanol fuel cells. Reducing the water and methanol loss from the anode to the cathode enables the use of highly concentrated methanol solutions to achieve enhanced performances. In this work, the results of a simulation study using a previous developed model for DMFCs are presented. Particular attention is devoted to the water distribution across the cell. The influence of different parameters (such as the cathode relative humidity (RH), the methanol concentration and the membrane, catalyst layer and diffusion media thicknesses) over the water transport and on the cell performance is studied. The analytical solutions of the net water transport coefficient, for different values of the cathode relative humidity are successfully compared with recent published experimental data putting in evidence that humidified cathodes contribute to a decrease on the water crossover. As a result of the modelling results, a tailored MEA build-up with the common available commercial materials is proposed to achieve low methanol and water crossover and high power density, operating at relatively high methanol concentrations. A thick anode catalyst layer to promote methanol oxidation, a thin anode gas diffusion layer as methanol carrier to the catalyst layer and a thin polymer membrane to lower the water crossover coefficient between the anode and cathode are suggested.  相似文献   

9.
In a high-concentration direct methanol fuel cell (HC-DMFC), the methanol crossover is typically decreased to an acceptable level by two main mechanisms: high methanol transport resistance between the anode reservoir and the membrane electrode assembly (MEA), and high water back flow from the cathode to the anode. Based on the semi-passive HC-DMFC fabricated in this work, the effects of methanol barrier layer (MBL) thickness and electrolyte membrane thickness on cell performance, methanol and water crossover, and fuel efficiency have been studied. The results showed that a thicker MBL could significantly decrease the methanol and water crossover by increasing the mass transport resistance between the anode reservoir and the MEA, while a thinner Nafion® membrane could also significantly decrease the methanol and water crossover by enhancing the water back flow from the cathode through the electrolyte membrane to the anode. Using Nafion® 212 as the electrolyte membrane, and a 6.4 mm porous PTFE plate as the MBL, a semi-passive HC-DMFC operating at 70 °C produced the maximum power density of 115.8 mW cm−2 when 20 M methanol solution was fed as the fuel.  相似文献   

10.
Small, stand-alone, direct methanol fuel cells (DMFCs) that have no auxiliary liquid pumps and gas blowers/compressors are known as passive DMFCs. The devices are ideal for powering portable electronic devices, as this type of fuel cell uniquely has a simple and compact system and no parasitic power losses. This article provides a comprehensive review of experimental and numerical studies of heat and mass transport in passive DMFCs. Emphasis is placed on the mechanisms and key issues of the mass transport of each species through the fuel cell structure under the influence of passive forces. It is shown that the key issue regarding the methanol supply is how to feed high-concentration methanol solution but with minimum methanol crossover through the membrane so that both the system specific energy and cell performance can be maximized. The key issue regarding the oxygen supply is how to enhance the removal of liquid water from the cathode under the air-breathing condition. For water transport, the aim is to transport the water produced on the cathode through the membrane to the anode by optimizing the design of the membrane electrode assembly so that the fuel cell can be operated with pure methanol and with minimum flooding at the cathode. The heat loss from a passive DMFC is usually large and it is therefore critically important to reduce this feature so that the fuel cell can be operated at a sufficiently high temperature, which critically affects the cell performance.  相似文献   

11.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   

12.
A mathematical model is developed to simulate the fundamental transport phenomena in a passive direct methanol fuel cell (DMFC) operating with neat methanol. The neat methanol operation is realized by using a ‘pervaporation’ membrane that allows the methanol concentration from the neat methanol in the fuel reservoir to be declined to an appropriate level in the anode catalyst layer (CL). The water required by the methanol oxidation reaction on the anode is passively obtained by diffusion from the cathode through the membrane. The numerical results indicate that the methanol delivery rate from the fuel reservoir to the anode CL is predominately controlled by the pervaporation process. It is also found that under the neat methanol operating condition, water distribution across the membrane electrode assembly is greatly influenced by the membrane thickness, the cathode design, the operating temperature, and the ambient relative humidity.  相似文献   

13.
A two-dimensional, two-phase, non-isothermal model was developed to investigate the water transport characteristics in a passive liquid-feed direct methanol fuel cell (DMFC). The liquid–gas two-phase mass transport in the porous anode and cathode was formulated based on multi-fluid model in porous media, and water and methanol crossover through the membrane were considered with the effect of diffusion, electro-osmotic drag, and convection. The model enabled numerical investigation of the effects of various operating parameters, such as current density, methanol concentration, and air humidity, as well as the effect of the cathode hydrophobic air filter layer, on the water transport and cell performance. The results showed that for the free-breathing cathode, gas species concentration and temperature showed evident differences between the cell and the ambient air. The use of a hydrophobic air filter layer at the cathode helped to achieve water recovery from the cathode to the anode, although the oxygen transport resistance was increased to some extent. It was further revealed that the water transport can be influenced by the ambient relative humidity.  相似文献   

14.
A two-dimensional, transient, multi-phase, multi-component, and non-isothermal model has been developed to solve the heat and mass transport in a passive and semi passive liquid-feed direct methanol fuel cell (DMFC). A semi passive DMFC uses channel at the cathode side to facilitate the oxidant transport. The transient characteristics of the temperature, methanol concentration, methanol crossover, useful current density and methanol evaporation are investigated. The results indicate that the temperature in the fuel cell increases during operation as much as 10 °C, due to the heat generation by internal phase change and the electrochemical reactions. However, it is revealed that the temperature distribution is nearly uniform at any time through all porous layers including the fuel cell and fuel delivery system. The effect of using an active feeding system in the cathode and passive methanol feeding in the anode (semi passive system) on the performance of a fuel cell is also studied. The active oxidant feeding to the cathode catalyst layer in the semi passive cell improved the fuel cell performance compared to that in a passive one. However, in general, the performance of passive cell is better than that in a semi passive one because of more temperature increase in the passive system.  相似文献   

15.
The methanol barrier layer adopted for high-concentration direct methanol fuel cells (HC-DMFCs) increases water transport resistance, and makes water management in HC-DMFCs more challenging and critical than that in the conventional direct methanol fuel cell (DMFC) without a methanol barrier layer. In the semi-passive HC-DMFC used in this work, oxygen was actively supplied to the cathode side while various concentrated methanol solutions, 4 M, 8 M, 16 M, and neat methanol, were passively supplied from the anode fuel reservoir. The effects of the cathode relative humidity, cathode pressure, and oxygen flow rate on the water crossover coefficient, fuel efficiency, and overall performance of the fuel cell were studied. Results showed that electrolyte membrane resistance, which was determined by its water content, was the predominant factor that determined the performance of a HC-DMFC, especially at a high current density. A negative water crossover coefficient, which indicated that water flowed back from the cathode through the electrolyte membrane to the anode, was measured when the methanol concentration was 8 M or higher. The back flow of water from the cathode is a very important water supply source to hydrate the electrolyte membrane. The water crossover coefficient was decreased by increasing the cathode relative humidity and back pressure. Water flooding at the cathode was not severe in the HC-DMFC, and a low oxygen flow rate was preferred to decrease water loss and yield a better performance. The peak power density generated from the HC-DMFC fed with 16 M methanol solution was 75.9 mW cm−2 at 70 °C.  相似文献   

16.
The effects of the design parameters of the anode diffusion layer (DL), including the PTFE loading in the backing layer (BL), and the carbon and PTFE loading in the microporous layer (MPL), on water transport through the membrane and the performance of a liquid-feed direct methanol fuel cell (DMFC) are experimentally investigated. The results indicate that increasing the PTFE loading in the BL and introducing a MPL could decrease water crossover through the membrane without sacrificing cell performance when the feed methanol concentration is increased. It is also found that changing the PTFE loading in the MPL has little effect on water crossover, whereas increasing the carbon loading in the MPL could noticeably decrease the water-crossover flux. Nevertheless, the ability of the MPL to reduce water crossover is limited by the presence of a number of mud cracks. To reduce further the water-crossover flux, a crack-free MPL made of multi-walled carbon nanotubes (MWCNTs) and PTFE is proposed. Tests indicate that the DMFC with the nanotube MPL results in a much lower water-crossover flux than a conventional carbon-powder MPL. More importantly, the use of the nanotube MPL allows the DMFC to be operated with a higher methanol concentration, and thereby increases the fuel cell system energy density.  相似文献   

17.
A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm−2, and high fuel efficiency, 70.1%, at room temperature of 25 ± 1 °C and ambient humidity of 25-50%.  相似文献   

18.
An algebraic model of the membrane electrode assembly of the direct methanol fuel cell is developed, which considers the simultaneous liquid water and methanol crossover effects, and the associated electrochemical reactions. The respective anodic and cathodic polarization curves can be predicted using this model. Methanol concentration profile and flux are correlated explicitly with the operating conditions and water transport rate. The cathode mixed potential effect induced by the methanol crossover is included and the subsequent cell voltage loss is identified. Water crossover is influenced by the capillary pressure equilibrium and hydrophobic property within the cathode gas diffusion layer. The model can be used to evaluate the cell performance at various working parameters such as membrane thickness, methanol feed concentration, and hydrophobicity of the cathode gas diffuser.  相似文献   

19.
A passive vapor-feed direct methanol fuel cell (DMFC) was experimentally investigated to improve its water management and cell performance when neat methanol was directly used. The effects of different water management approaches, including the addition of a water management layer (WML) and a hydrophobic air filter layer (AFL), and the use of thinner membrane on the cell performance, internal resistance, and fuel efficiency were investigated. The transient discharging behavior and long-term stability of the passive vapor-feed DMFC with the optimized water management were also studied. The results showed that by adding a WML and an AFL, or thinning the membrane thickness, the water management capability can be highly improved, not only enhancing the water recovery from the cathode to the anode, leading to a lower internal resistance and better cell performance, but also curbing the methanol crossover, increasing the fuel efficiency. It is also seen from the long-term constant-voltage test that the discharged current varied with the methanol concentration in the tank and the ambient temperature, while no evident permanent performance degradation was encountered after the 150 h test.  相似文献   

20.
Passive direct methanol fuel cells (DMFCs) are promising energy sources for portable electronic devices. Different from DMFCs with active fuel feeding systems, passive DMFCs with nearly stagnant fuel and air tend to bear comparatively less power densities. In the aspect of cell performance optimization, there could be significant differences in cell design parameters between active and passive DMFCs. A numerical model that could simulate methanol permeation and the pertinent mixed potential effect in a DMFC was used to help seek for possibilities of optimizing the cell performance of a passive DMFC by studying impacts from variations of cell design. The subjects studied include catalysis of the anode and the cathode, membrane thickness, membrane conductivity, and methanol concentration. In contrast to general understandings on a DMFC with active fuel and reactant gas, our simulation results for a passive DMFC used in this study indicated that the catalysis of the cathode appeared to be the most important parameter. The maximum power density was predicted to improve by 38% with the thickness of the cathodic catalyst layer doubled and by 36% with the catalyst loading doubled. The improvement on cell performance would multiply if we simultaneously adopted the most optimal parameters during the simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号