共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Shabgard T.L. Bergman N. Sharifi A. Faghri 《International Journal of Heat and Mass Transfer》2010,53(15-16):2979-2988
A thermal network model is developed and used to analyze heat transfer in a high temperature latent heat thermal energy storage unit for solar thermal electricity generation. Specifically, the benefits of inserting multiple heat pipes between a heat transfer fluid and a phase change material (PCM) are of interest. Two storage configurations are considered; one with PCM surrounding a tube that conveys the heat transfer fluid, and the second with the PCM contained within a tube over which the heat transfer fluid flows. Both melting and solidification are simulated. It is demonstrated that adding heat pipes enhances thermal performance, which is quantified in terms of dimensionless heat pipe effectiveness. 相似文献
2.
K. Nithyanandam R. Pitchumani 《International Journal of Heat and Mass Transfer》2011,54(21-22):4596-4610
Latent thermal energy storage system (LTES) is an integral part of concentrating solar power (CSP) plants for storing sun’s energy during its intermittent diurnal availability in the form of latent heat of a phase change material (PCM). The advantages of an LTES include its isothermal operation and high energy storage density, while the low thermal conductivity of the PCM used in LTES poses a significant disadvantage due to the reduction in the rate at which the PCM can be melted (charging) or solidified (discharging). The present study considers an approach to reducing the thermal resistance of LTES through embedding heat pipes to augment the energy transfer from the heat transfer fluid (HTF) to the PCM. Using a thermal resistance network model of a shell and tube LTES with embedded heat pipes, detailed parametric studies are carried out to assess the influence of the heat pipe and the LTES geometric and operational parameters on the performance of the system during charging and discharging. The physical model is coupled with a numerical optimization method to identify the design and operating parameters of the heat pipe embedded LTES system that maximizes energy transferred, energy transfer rate and effectiveness. 相似文献
3.
An economic evaluation of a latent heat thermal energy storage (LHTES) system for large scale concentrating solar power (CSP) applications is conducted. The concept of embedding gravity-assisted wickless heat pipes (thermosyphons) within a commercial-scale LHTES system is explored through use of a thermal network model. A new design is proposed for charging and discharging a large-scale LHTES system. The size and cost of the LHTES system is estimated and compared with a two-tank sensible heat energy storage (SHTES) system. The results suggest that LHTES with embedded thermosyphons is economically competitive with current SHTES technology, with the potential to reduce capital costs by at least 15%. Further investigation of different phase change materials (PCMs), thermosyphon working fluids, and system configurations has the potential to lead to designs that can further reduce capital costs beyond those reported in this study. 相似文献
4.
In this study, a theoretical approach is proposed for the prediction of time and temperature during the heat charge and discharge in the latent heat storage of phase changed materials (PCM). By the use of the average values of the mean specific heat capacities for the phase‐changed materials, analytical solutions are obtained and compared with the available experimental data in the literature. It is shown that decreasing the entry temperature of the working fluid from ?4 to ?15°C has a very dominant and strong effect on the PCM solidification time. The effect of the working fluid flow rate and the material of PCM capsules on the time for complete solidification and total charging is also investigated. The agreement between the present theoretical model results and the experimental data related to the cooling using small spheres and the heat storage using rectangle containers is very good. The largest difference between the present results and the experimental data becomes about 10% when the fluid temperature approaches the phase change temperature at high temperatures. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
5.
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided. 相似文献
6.
A. Abhat 《Solar Energy》1983,30(4):313-332
Heat-of-fusion storage materials for low temperature latent heat storage in the temperature range 0–120°C are reviewed. Organic and inorganic heat storage materials classified as paraffins, fatty acids, inorganic salt hydrates and eutectic compounds are considered. The melting and freezing behaviour of the various substances is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry. The importance of thermal cycling tests for establishing the long-term stability of the storage materials is discussed. Finally, some data pertaining to the corrosion compatibility of heat-of-fusion substances with conventional materials of construction is presented. 相似文献
7.
《Renewable & Sustainable Energy Reviews》2008,12(4):999-1031
Mathematical modeling of a latent heat thermal energy storage system (LHTES) was used for the optimum material selection and to assist in the optimal designing of the systems. In this paper, two types of models are mainly discussed, on the basis of first law and second law of thermodynamics. The important characteristics of different models and their assumptions used are presented and discussed, the experimental validation of some models are also presented. 相似文献
8.
M. Lacroix 《Solar Energy》1993,50(4)
A theoretical model was developed to predict the transient behavior of a shell-and-tube storage unit with the phase change material (PCM) on the shell side and the heat transfer fluid (HTF) circulating inside the tubes. The multidimensional phase change problem is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. The numerical predictions are validated with experimental data. A series of numerical experiments are then undertaken to assess the effects of various thermal and geometric parameters on the heat transfer process and on the behavior of the system. Results show that the shell radius, the mass flow rate, and the inlet temperature of the HTF must be chosen carefully in order to optimize the performance of the unit. 相似文献
9.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd. 相似文献
10.
Kozo Katayama Akio Saito Yoshio Utaka Akihiro Saito Hideo Matsui Hiromichi Maekawa A.Z.A. Saifullah 《Solar Energy》1981,27(2):91-97
The characteristic variation of the rate of heat transfer to and from a latent heat thermal energy storage capsule was investigated analytically and experimentally. Basic experiments were carried out to simulate a solar energy storage capsule, using a horizontal cylindrical capsule (300 mm length, 40 mm o.d.) filled with naphthalene as the phase change material. The variation of heat flux during the processes of heat storage and removal was measured by a heat flow meter wrapped around the capsule, as the capsule was subjected to stepwise variations of the surface temperature. Finite difference calculations based on heat conduction were also carried out to compare with the experimental results. For the heat removal process, the experimental results and the calculated heat flux agreed well with each other. They showed different characteristic trends for the heat storage process, due to the effects of natural convection. 相似文献
11.
The use of a heat exchanger using phase change material (PCM) is an example of latent heat thermal energy storage (LHTES). In this study, the charging of PCM (RT50) is studied in a double pipe heat exchanger. The designing of the heat exchanger needs to be optimized for operating and boundary conditions to store latent heat efficiently. The size of the equipment and the amount of PCM are also important to calculate the latent heat storage capacity of the LHTES device. In this study, the amount of PCM taken is quite high to avoid sensible heat transfer and to maximize the heat content of PCM. The charging process of PCM is numerically simulated using an enthalpy-porosity model. The study includes the effect of inlet temperature and flow rate of high-temperature-fluid (HTF) and concludes that both play an important role in determining the charging time. The continuous increase in inlet temperature of HTF can decrease the charging time of PCM in the heat exchanger. However, the continuous increase in the HTF flow rate cannot show the same effect. The charging time can only be minimized with a specified flow rate regime for a specific inlet temperature of HTF. These factors consequently affect the efficiency of the heat exchanger. 相似文献
12.
Latent heat thermal energy storage (LHTES) problems include a lot of boundary conditions that could not be solved by exact solution, so new approaches to solving such problems could revolutionize the advanced energy storage devices. This paper focuses on reformulating the generalized differential quadrature method (GDQM) for a one-dimensional solidification/melting Stefan problem as a fundamental LHTES problem and solves some practical cases. Convergence and comparisons demonstrate that the proposed approach is sufficiently reliable. By checking the accuracy of the proposed approach for the LHTES problem (where Stefan number is below 0.2), it was demonstrated that for all Stefan numbers, the maximum error is less than 3.81% for temperatures. As the usual range of thermal energy storages, for Stefan numbers up to 0.2 the solution yields errors less than 0.2%. Then, the proposed approach is very ideal for such applications. In comparison, GDQM has a more accurate response than an integral solution for Stefan numbers less than 0.2. When this priority of GDQM comes with its low computational cost, it would undoubtedly be preferable. 相似文献
13.
A key drawback of using latent heat thermal storage systems for concentrating solar thermal power plants is the low thermal conductivity of the phase change material during the melting and solidification processes. This paper investigates an approach for reducing the thermal resistance by utilising axially finned heat pipes. A numerical model simulating the phase change material melting and solidification processes has been developed. This paper also includes the models of the evaporation and condensation of the heat pipe working fluid. The results show that by adding four axial fins and including the evaporation and condensation, the overall thermal performance of the storage system is enhanced significantly compared to having bare heat pipes. After 3 h a total of 106% increase in energy storage is obtained during the charging process. The results also show that the combined effect of incorporating the evaporation/condensation process and adding the fins leads to a threefold increase in the heat storage during the first 3 h. During the discharge process, there was a 79% increase in energy discharged and also the combined effect of incorporating the evaporation/condensation as well as adding the fins results in an almost four fold increase in the heat extracted within the first 3 h. A parametric analysis has also been carried out to analyse the effect of the finned heat pipe parameters after incorporating evaporation and condensation of the heat pipe working fluid. 相似文献
14.
The charging and discharging rates of a phase change material (PCM) in a horizontal latent heat storage unit (LHSU) is largely influenced by the lower thermal conductivity of the PCM. In the present research, four different configurations of longitudinal fins are proposed to augment the heat transfer in horizontal shell and tube type LHSUs. Numerical investigations are reported to establish the thermal performance augmentation with rectangular, triangular, and Y‐shaped (bifurcated) fins. From the results, it has been inferred that all fin configurations provide a faster charging and discharging rate. In the present set of geometric dimensions of LHSU considered, a reduction in charging time of 68.71% is evaluated for case III (three rectangular fins with one fin positioned in the area of the heat transfer fluid [HTF] surface) and case V (two bifurcated fins with one fin positioned in the area of the HTF surface). Moreover, overall cycle (charging + discharging) time is reduced by 58.3% for case III. Employment of fins results in a faster rate of absorption and extraction of energy from the PCM. 相似文献
15.
《Applied Thermal Engineering》2003,23(13):1647-1664
Porous latent heat thermal energy storage for thermoelectric cooling is simulated via a matrix-based enthalpy formulation, having the temperature as unknown, in a three-dimensional domain. The system is made up of two aluminum containers; the inner one contains the cooling objective in water suspension and the outer one the phase change material (PCM) in a porous aluminum matrix. The system’s charging and discharging processes are simulated for constant thermoelectric module cold side temperature under different porosities of the aluminum matrix. The mathematical modeling approach simplifies the analysis while the metal matrix in the PCM greatly improves performance. A direct application of the studied system is vaccine conservation in solar powered thermoelectric cooling systems. 相似文献
16.
Compatibility and durability of phase change materials (PCM) and packaging laminate films were tested in this study. The objective was to identify viable component materials for heat storage tube-sheets. The tube-sheets are the essential part of a patented latent heat storage device. The unique feature of the device is its offset arrangement of mass-producible units. The results of cycling tests on two PCMs and one laminate are presented in this paper. After more than 1000 accelerated cycles of charging and discharging tests, the tubes maintained operable stability and showed no sign of deterioration. The PCMs displayed the same temperature-time pattern during the entire cycling test. The packaging laminate was compatible with the PCM's and capable of maintaining satisfactory strength. 相似文献
17.
Hamidreza Shabgard Christopher W. Robak Theodore L. Bergman Amir Faghri 《Solar Energy》2012,86(3):816-830
A thermal network model is developed to predict the performance of latent heat thermal energy storage (LHTES) systems including cascaded phase change materials (PCMs) and embedded heat pipes/thermosyphons. Because the design of LHTES systems involves a compromise between the amount of energy stored, the heat transfer rate, and the quality of the released thermal energy, an exergy analysis is also carried out to identify the preferred LHTES design. It is found that the LHTES with the lowest melting temperature PCM yields the highest exergy efficiency. However, a cascaded LHTES recovers the largest amount of exergy during a 24 h charging–discharging cycle. Quantitatively, the cascaded LHTES recovers about 10% more exergy during a 24 h charging–discharging cycle compared to the best non-cascaded LHTES considered in this work. 相似文献
18.
Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling 总被引:1,自引:0,他引:1
Jun Fukai Yuichi Hamada Yoshio Morozumi Osamu Miyatake 《International Journal of Heat and Mass Transfer》2003,46(23):4513-4525
Brushes made of carbon fibers with a high thermal conductivity are inserted on the shell side of a heat exchanger to enhance the conductive heat transfer rates in phase change materials. The experimental results show that the brushes essentially improve the heat exchange rate during the charge and discharge processes even when the volume fractions of the fibers are about one percent. A three-dimensional model describing the heat transfer in the heat exchanger is numerically solved. The model predicts well the experimental outlet fluid temperatures and the local temperatures in the composite. 相似文献
19.
An analytical solution of a latent heat storage unit (LHSU) consisting of a shell-and tube was obtained by using the Exponential Integral Function and the variables separation technique. The working fluid (water) circulating by forced convection inside the inner tube charges and discharges the storage unit. The comparison between analytical predictions and experimental data shows good agreement. Extensive parametric studies were conducted in order to examine the effect of the pertinent parameters (such as natural convection, mass flow rate of HTF, outer tube radius, pipe length etc.) on the melting and solidification processes of paraffin as a PCM. In order to provide guidelines for system performance and design optimisation, unsteady temperature distributions within PCM during melting/solidification, energy stored, position of moving interface and thermal efficiency have been obtained by a series of numerical calculations and represented graphically. 相似文献
20.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity. 相似文献