首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed three-dimensional linear stability analyses for natural convection in an inclined square duct. The duct is heated from the bottom, while the lateral walls are assumed to be perfectly thermal conducting. Three-dimensional transverse rolls whose axes are normal to the axis of the duct occur from the motionless state when the Rayleigh number exceeds a critical value and the duct is placed horizontally (θ = 0°). However, it is found that when the duct is placed inclined (θ = 0.01°), a two-dimensional longitudinal roll which is unchanged in the axis of the duct occurs and is stable if the Rayleigh number is small.  相似文献   

2.
The effect of a basic Poiseuille throughflow on the thermal instability of a horizontal fluid layer bounded by two plane parallel walls is studied. An unstable thermal stratification is studied, entirely due to a uniform internal heat generation in the fluid, whereas the thermal boundary conditions do not impress any temperature difference across the fluid layer. Two cases are investigated: a symmetric case where both boundaries are perfectly conducting; a non-symmetric case where the lower boundary is adiabatic and the upper boundary is perfectly conducting. A linear stability analysis is carried out and the eigenvalue problem is solved numerically for arbitrary oblique rolls, and by a symbolic weighted residual method in the special case of longitudinal rolls. The main result is that the basic Poiseuille flow does not influence the thermoconvective instability at the onset of the least stable modes, i.e. the longitudinal rolls. Thus, the critical conditions are just the same as for a fluid at rest in the basic state. Although the focus is on the thermoconvective instability, it is proved that, even in the presence of the internal heat generation, Squire’s theorem holds for the hydrodynamic instability of the plane Poiseuille flow.  相似文献   

3.
The flow and heat transfer in a parallelogram enclosure filled with a porous medium is analyzed numerically. The heated bottom wall has a sinusoidal temperature distribution and side walls cooled isothermally while the upper wall is well insulated. Dimensionless Darcy law and energy equations are solved using the finite difference method along with the corresponding boundary condition. Computations were carried out for four inclination angles of side walls (γ = 45°, 60°, 75°, 90°) with different Rayleigh numbers (100≤Ra≤1000) and their effects on the flow field and heat transfer are discussed. It is found that the inclination angle has a significant effect on flow pattern and heat transfer and an increase in the angle leads to a decrease in the strength of the right vortex. The study also revealed that as the Rayleigh number increases at γ = 45°, another (third) vortex develops along the left wall and its strength enhances with Rayleigh number. At the end, a correlation is extracted from the numerical data which represents the relation between the Nusselt number, inclination angle, and the Rayleigh number. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; 39(7): 497–506, 2010; Published online in Wiley Online Library ( wileyOnlinelibrary.com ). DOI 10.1002/htj.20312  相似文献   

4.
The combined effects of the double-diffusion and of the viscous dissipation on the convective instability in a fluid-saturated porous medium with a basic horizontal throughflow are investigated. A horizontal porous layer with an impermeable adiabatic lower wall and an impermeable isothermal upper wall is considered. The parallel boundary walls are assumed to have uniform, but unequal, concentrations of the solute. A linear stability analysis is carried out both numerically and by a first-order perturbation method. General disturbances having the form of oblique rolls are considered, reducing either to longitudinal rolls or to transverse rolls in the special cases of roll axes parallel or orthogonal to the basic flow direction, respectively. It is shown that the combined effects of viscous dissipation and mass diffusion may lead to the instability of the basic horizontal flow. Either the longitudinal rolls or the transverse rolls may be the preferred modes of instability depending on the value of the viscous dissipation parameter Ξ. The longitudinal rolls are the most unstable when Ξ < 61.86657.  相似文献   

5.
A linear stability analysis of the basic uniform flow in a horizontal porous channel with a rectangular cross section is carried out. The thermal boundary conditions at the impermeable channel walls are: uniform incoming heat flux at the bottom wall, uniform temperature at the top wall, adiabatic lateral walls. Thermoconvective instabilities are caused by the incoming heat flux at the bottom wall and by the internal viscous heating. Linear stability against transverse or longitudinal roll disturbances is investigated either analytically by a power series formulation and numerically by a fourth order Runge-Kutta method. The special cases of a negligible effect of viscous dissipation and of a vanishing incoming heat flux at the bottom wall are discussed. The analysis of these special cases reveals that each possible cause of the convective rolls, bottom heating and viscous heating, can be the unique cause of the instability under appropriate conditions. In all the cases examined, transverse rolls form the preferred mode of instability.  相似文献   

6.
This experimental investigation focuses on the effects of angle of inclination on buoyancy-driven flows inside tall, rectangular, differentially-heated cavities. It considers a rectangular cavity with an aspect ratio of 28.6, with its two long sides maintained at different temperatures and the two short, end-walls, thermally insulated. The spanwise aspect ratio is 6.82 and the side walls are also thermally insulated. The Rayleigh number, based on the temperature difference and spacing between the long sides, is 0.86 × 106 for most cases and the working fluid is air (Prandtl number 0.71). Experimental data, for the flow and the thermal fields, using laser Doppler anemomentry and thermocouple traverses respectively, are presented for the cavity inclined at 60° and 15° to the horizontal, for both stable (the hot surface being the upper surface) and unstable orientations. The 15° stable case is investigated at a higher Rayleigh number of 1.54 × 106 and some additional data for the 15° unstable case are also presented at this higher value of Rayleigh number. For moderate angles of inclination, the flow is two-dimensional and the effects of inclination are primarily confined to the fluctuating fields. For large angles of inclination, the flow becomes three-dimensional. In the unstable 15° angle of inclination case a set of four longitudinal vortices are formed over the entire length of the cavity, with four counter-rotating re-circulation cells within the cross-section parallel to the thermally active walls. The stable 15° angle of inclination leads to the formation of two longitudinal vortices and two re-circulation cells. At the 15° angle (stable and unstable), the enhanced mixing leads to uniform temperature in the cavity core and thus to only minor deviations from two-dimensionality in the thermal field. A modest rise in Rayleigh number, in the 15° unstable case, does not affect the mean motion, but causes an increase in the normalised turbulence intensities.  相似文献   

7.
The inertia effect on the onset of thermal instability in natural convection flow over heated horizontal and inclined flat plates embedded in fluid-saturated porous media is analyzed. The linear non-parallel flow model is employed in the instability analysis, which takes into account the streamwise variation as well as the transverse variation of the disturbance amplitude functions. The set of partial differential equations for the disturbance amplitude functions are converted to a system of homogeneous linear ordinary differential equations with homogeneous boundary conditions by the local non-similarity method. The resulting eigenvalue problem is then solved by an implicit finite-difference method. Representative neutral stability curves and critical Rayleigh numbers are presented. It has been found that as the angle of inclination relative to the horizontal increases, the surface heat transfer rate increases, whereas the flow becomes more stable to the vortex mode of instability. Also, as the inertia effect, expressed in terms of Forchheimer number, Fr, increases, the heat transfer rate decreases, but the flow becomes more stable. It is demonstrated that the non-parallel flow model predicts a more stable flow than the parallel flow model.  相似文献   

8.
The process of vortex formation, distributions of pressure coefficients, and convective heat transfer in a turbulent flow past a cavity with a low aspect ratio and inclined frontal and rear walls were experimentally studied. The angle of wall inclination φ was varied in the interval from 30° to 90°. Visualization techniques were applied to trace the evolution of the flow with the angle φ as the transverse cavity became more open. Pressure fields in the longitudinal and transverse sections on the bottom wall of the cavity, and on its frontal and rear walls, were measured. The measured distributions of temperature in the longitudinal and transverse sections on the three heated walls, and the obtained thermographic fields over the whole heated surface, were used to calculate local and average heat-transfer coefficients. It is found that in the interval of wall inclination angles φ = 60–70° the flow in the cavity becomes unstable, with the primary vortex changing its structure from single-cellular to double-cellular. As a result, the distributions of static pressure and surface temperature across and along the cavity suffer dramatic changes. At smallest angles φ the flow re-attachment point gets displaced into the cavity to cause an abrupt growth of pressure and heat-transfer coefficients on the rear wall, which leads to a slight increase of the surface-mean pressure and heat transfer inside the cavity. At the angle of instability, φ = 60°, the local heat-transfer coefficient decreases markedly over the cavity span from the end faces of the cavity toward its center, and a most pronounced intensification of heat transfer is observed.  相似文献   

9.
The effect of cylinder inclination on thermal buoyancy induced flows and internal natural convective heat transfer is explored using CFD simulations. The cylinder’s top and bottom surfaces were maintained at different temperatures while the curved surface was adiabatic. The aspect ratio (length/diameter) of the cylinder was unity and the Prandtl number of the fluid was fixed at 0.71. The Rayleigh number of the confined fluid was varied from 103 to 3.1 × 104 by changing the specified end wall temperatures. The critical Rayleigh number was estimated to be 3800 for the vertical cylinder. Relaxing the convergence criterion caused false hysteresis in the converged results for the vertical cylinder. Typical natural convective fluid flow and temperature patterns obtained under laminar flow conditions are illustrated for various inclinations ranging from 0° to 180°. Flow visualization studies revealed complex three-dimensional patterns. Different thermal–hydrodynamic regimes were identified and were classified in terms of Rayleigh number and angle of inclination. Empirical correlations for the Nusselt number and maximum velocities in the domain as a function of the inclination angle and Rayleigh number are developed.  相似文献   

10.
The convective instability driven by buoyancy in the Poiseuille–Rayleigh–Bénard flow through two infinite parallel horizontal plates filled with nanofluids is investigated using linear stability analysis. We considered water‐based nanofluids with different volume fractions of aluminum ( A l 2 O 3 ) and silver ( A g ) nanoparticles. A spectral collocation method founded on Chebyshev polynomials is implemented and the obtained algebraic eigenvalue problem is solved. In this study, we have numerically determined the critical Rayleigh number of the onset of longitudinal and transversal rolls and the results are represented in the form of marginal stability curves. Critical wave numbers that describe the size of convective cells in the flow are also presented, analyzed, and compared with those of the Poiseuille–Rayleigh–Bénard flow without nanoparticles. The effects of the type and nanoparticle volume fractions on the onset of both longitudinal and transversal rolls are investigated.  相似文献   

11.
ABSTRACT

In this paper, we analyze numerically the effects of the inclination angle on natural convection heat transfer and entropy generation characteristics in a two-dimensional square enclosure saturated with a porous medium. There is a significant alteration in Nusselt number with the orientation of the enclosure at higher values of Rayleigh number. It reveals that the variation of entropy generation rate with the inclination angle is significant for higher values of Darcy number. The dominant source of irreversibility is due to heat transfer at low values of Darcy number, whereas entropy generation due to fluid flow dominates over that due to heat transfer for larger values of Darcy number.  相似文献   

12.
The unsteady laminar natural convection in an inclined square enclosure with heat-generating porous medium whose heat varies by a cosine function is investigated by a thermal equilibrium model and the Brinkman–Darcy–Forchheimer model numerically, with the four cooled walls of closure as isothermal. The numerical code based on the finite-volume method has been validated by reference data before it was adopted. Influence of dimensionless frequency and inclination angle on heat transfer characteristics in a square enclosure, such as flow distribution, isotherm, averaged Nusselt number on each wall, and time-averaged Nusselt number, are discussed, with specified value for Rayleigh number = 108, Darcy number = 10?4, Prandtl number = 7, porosity = 0.4, and specific heat ratio = 1. It is found that when the internal heat source varies by cosine, the Nusselt numbers of the four walls oscillate with the same frequency as the internal heat source; however, phase difference occurs. Moreover, frequency has little impact on time-averaged Nusselt number of the four walls, which is different from the phenomenon discovered in natural convection with suitable periodic varying wall temperature boundary condition. Moreover, inclination angle plays an important role in the heat transfer characteristics of the walls studied.  相似文献   

13.
The linear stability of a fluid saturated porous layer bounded by two parallel impermeable plane walls is investigated. The lower wall is subject to a uniform heat flux, while the upper wall is subject to a linearly varying temperature in a horizontal direction. Two parameters govern the onset of convection in the porous layer: the vertical Darcy–Rayleigh number, and the horizontal Darcy–Rayleigh number. The objective of this study is to obtain the onset conditions for the instability of the basic parallel flow in the layer. The governing balance equations are written in a dimensionless form and solved on assuming oblique roll disturbances, arbitrarily oriented in the horizontal plane. Mathematically, this leads to a system of two ordinary differential equations to be solved as an eigenvalue problem. The solution, carried out numerically, provides the neutral stability condition. The numerical solution is performed by employing a procedure based on the sixth-order Runge–Kutta method and on the shooting method for satisfying the boundary conditions at the upper boundary wall.  相似文献   

14.
We consider a stability analysis of a fluid in a porous layer heated from below including the effects of a superposed through-flow, porous inertia and the lateral confinement of the medium with respect to extended and localized perturbations. It is found that extended perturbations promote the appearance of down-stream moving transverse modes (T modes) provided that the Péclet number Pe remains below a critical value Pe1. We showed that the T modes are replaced by stationary longitudinal rolls (L rolls) if Pe > Pe1. On the other hand when localized perturbations are considered, a spatial stability analysis is performed to determine regions of convective and absolute instability for T modes as well as for L rolls in the filtration Rayleigh–Péclet plane. We found that while the lateral aspect ratio has a strong influence on the convective/absolute nature of secondary flows, the main effect of porous inertia is to delay the transition to the absolute instability. Quantitative comparisons between our finding and experimental results published by one of us (M.C.) are presented. As far as the solid thermal conductivity is similar to that of the fluid, it is found that the experimentally observed transition between the T modes and L rolls occurs at the border between convective and absolute instability. Moreover it has also been found that the measured and the theoretically predicted wavelengths of T modes as well as their period of oscillation are in good agreement for various combinations of Ra and Pe numbers. The agreement between theory and experiment becomes less satisfactory when the matrix is much more conductive than the fluid. Therefore the assumption of local thermal equilibrium between solid and fluid becomes debatable.  相似文献   

15.
In a composite system possessing rigid-rigid boundaries, the significance of thermal diffusion on the onset of triple diffusive convection is analyzed. The Darcy–Brinkman–Rayleigh–Benard model is employed to model the porous media. The regular perturbation methodology has been used to solve the governing equations of the composite system with the Boussinesq approximation. The critical thermal Rayleigh number, which determines the stability of the system, is estimated analytically. A graphical assessment of the impact of multiple physical attributes on the stability of the system is made. It is observed that the Soret parameters and solute Rayleigh numbers have a stabilizing effect, whereas the Darcy number exhibits a destabilizing effect upon the onset of triple diffusive convection in the composite system.  相似文献   

16.
Abstract

Buoyancy-induced vortex flow structures and the associated heat transfer were numerically investigated in a mixed convective airflow in a bottom-heated horizontal rectangular duct of different aspect ratios. The unsteady three-dimensional Navier-Stokes and energy equations were directly solved by a higher order upwind finite difference scheme. Results were presented in particular for Reynolds numbers ranging from 5 to 15, Rayleigh numbers up to 9000, and aspect ratios from 4 to 12. The predicted results clearly show significant differences in vortex structures induced in ducts with small and large aspect ratios. For an aspect ratio less than 6 the transverse vortex rolls are periodically generated in the duct entry and gradually transform into longitudinal rolls when moving downstream. The resulting vortex flow eventually evolves to a time periodic state with the upstream and downstream portions of the duct dominated by the transverse rolls and longitudinal rolls, respectively. For a large aspect ratio (A > 9) the transverse rolls prevail in the duct core, with two to three longitudinal rolls existing near each sidewall. The flow oscillation in the region dominated by the transverse rolls is much higher than that dominated by the longitudinal rolls. At high Ra the flow becomes chaotic in time, and the duct is filled with unstable irregular vortex rolls.  相似文献   

17.
The classical Rayleigh–Bénard theory, for the onset of convection in a horizontal layer uniformly heated from below, has been applied to a bidisperse porous medium. The linear stability analysis leads to an expression for the critical Rayleigh number as a function of a Darcy number, two volume fractions, a permeability ratio, a thermal capacity ratio, a thermal conductivity ratio, an inter-phase heat transfer parameter and an inter-phase momentum transfer parameter.  相似文献   

18.
The model of thermosolutal convection in a fluid‐saturated bidisperse porous medium of Darcy type is studied in this paper. The permeability is allowed to be horizontally isotropic for both the macro‐ and microphases. The linear instability and nonlinear stability are analyzed by taking the Soret effect into account. Furthermore, the effect of anisotropy parameter, Soret coefficient, and other physical parameters on the stability of the system are investigated. It is shown that the linear instability boundaries and the energy stability boundaries do not coincide when the layer is heated and salted from below, where a region of potential subcritical instability occurs. The results reveal that the horizontal to vertical permeability ratio plays a crucial role in the stability of the system. It is also observed that for large values of the salt Rayleigh number, the onset of thermal convection is more likely to be via oscillatory convection rather than stationary convection. Furthermore, the onset of stationary convection is significantly influenced by the presence of the Soret coefficient.  相似文献   

19.
In this study, relationships of Nusselt–Rayleigh–Fourier type are proposed for the case of air-filled hemispherical cavity whose dome is oriented downwards and maintained isothermal. Its disk is subjected to a constant heat flux and inclined at an angle varying between 90° (vertical position) and 180° (disk horizontal with dome oriented downwards). The numerical approach is performed in transient regime by means of the finite volume method for Rayleigh numbers in the range of 104  5 × 108. These results are confirmed at steady state by measurements done for some configurations in a previous study for the same Rayleigh and inclination ranges. Otherwise, they complete other surveys considering inclination angles varying between 0° (horizontal cavity with dome oriented upwards) and 90° (vertical cavity) for a wider range of Rayleigh numbers. The correlations allow thermal control of devices submitted to natural convection in hemispherical cavities during the time preceding the steady state after their switch on.  相似文献   

20.
This article deals with mixed convection of a binary mixture within a rectangular duct heated from below and under Soret influence. Going forward, the problem is referred to as the Poiseuille Rayleigh Benard Soret (PRBS) problem. We study the pattern formation of a binary mixture heated from below in the presence of a horizontal flow. When the system exhibits a supercritical bifurcation, either 2-D or 3-D convective structures appear. In a layer of infinite extent the presence of through-flow breaks the rotational symmetry, and the system at the convective threshold has to decide between longitudinal and transverse rolls among several unstable modes; we focus attention on transverse rolls. These rolls are generally unsteady and form traveling waves along the duct, and the presence of through-flow reduces the size of the region of convective instability. We show that the spanwise Ay aspect ratio has a strong influence on the threshold of convection, and in binary mixtures with a negative separation ratio N, and in distinction to the case for positive values of N; traveling waves can move against the direction of the mean flow. In general, nonlinear front propagation dominates the dynamics. The phase velocities and wave numbers of these fronts are determined. For the case of very long cells, we install continuity conditions in order to simulate an infinite duct. Changes in the outlet boundary conditions, in order to save the physics, influence the stability and wavelengths in the upstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号