首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建筑墙体热、湿及空气耦合传递   总被引:1,自引:0,他引:1  
为了研究建筑墙体的热质耦合传递规律,该文考虑了太阳辐射的影响,建立了在第三类边界条件下建筑墙体非稳态热、湿及空气渗透耦合传递的物理及数学模型,开发了相应的数值模拟计算软件。给出了墙体热、湿及空气耦合传递时各部位模拟计算温度随时间的变化曲线及不同使用年限湿容量沿墙体厚度的分布规律,并将墙体的模拟计算结果与现场实测热流及温度进行了对比分析。  相似文献   

2.
The drying behavior of a moist object subjected to convective drying is analyzed numerically by solving heat and moisture transfer equations. A 3-D numerical model is developed for the prediction of transient temperature and moisture distribution in a rectangular shaped moist object during the convective drying process. The heat transfer coefficients at the surfaces of the moist object are calculated with an in-house computational fluid dynamics (CFD) code. The mass transfer coefficients are then obtained from the analogy between the thermal and concentration boundary layer. Both these transfer coefficients are used for the convective boundary conditions while solving the simultaneous heat and mass transfer governing equations for the moist object. The finite volume method (FVM) with fully implicit scheme is used for discretization of the transient heat and moisture transfer governing equations. The coupling between the CFD and simultaneous heat and moisture transfer model is assumed to be one way. The effect of velocity and temperature of the drying air on the moist object are analyzed. The optimized drying time is predicted for different air inlet velocity, temperature and moisture content. The drying rate can be increased by increasing the air flow velocity. Approximately, 40% of drying time is saved while increasing the air temperature from 313 to 353 K. The importance of the inclusion of variable surface transfer coefficients with the heat and mass transfer model is justified.  相似文献   

3.
As numerical models of heat and moisture transfer in porous building materials advance and numerical investigations increase in the literature, there remains a need for simple accurate and well-documented experimental data for model validation. The aim of this two part paper is to provide such experimental data for two hygroscopic building materials (cellulose insulation and spruce plywood) exposed to 1-D and transient boundary conditions. Part I of this paper describes the transient moisture transfer (TMT) facility used to generate the experimental data as well as the uncertainty and repeatability of the measured data. The measured material properties are also presented to fully document the experimental data set and permit its use by other researchers.  相似文献   

4.
The combined heat, air and moisture transfer in building hollow elements is of paramount importance in the construction area for accurate energy consumption prediction, thermal comfort evaluation, moisture growth risk assessment and material deterioration analysis. In this way, a mathematical model considering the combined two-dimensional heat, air and moisture transport through unsaturated building hollow bricks is presented. In the brick porous domain, the differential governing equations are based on driving potentials of temperature, moist air pressure and water vapor pressure gradients, while, in the air domain, a lumped approach is considered for modeling the heat and mass transfer through the brick cavity. The discretized algebraic equations are solved using the MTDMA (MultiTriDiagonal-Matrix Algorithm) for the three driving potentials. Comparisons in terms of heat and vapor fluxes at the internal boundary are presented for hollow, massive and insulating brick blocks. Despite most of building energy simulation codes disregard the moisture effect and the transport multidimensional nature, results show those hypotheses may cause great discrepancy on the prediction of hygrothermal building performance.  相似文献   

5.
This paper reports on a transient model of coupled heat and moisture transfer through fibrous insulation, which for the first time takes into account of evaporation and mobile condensates. The model successfully explained the experimental observations of Farnworth [Tex. Res. J. 56 (1986) 653], and the numerical results of the model were found to be in good agreement with the experimental results of a drying test. Based on this model, numerical simulation was carried out to better understand the effect of various material and environmental parameters on the heat and moisture transfer. It was found that the initial water content and thickness of the fibrous insulation together with the environmental temperature are the three most important factors influencing the heat flux.  相似文献   

6.
In this paper, a mathematical model dealing with a coupled heat, air, and moisture transfer in a building envelope was developed. Based on the three-following driving potential: vapor pressure, dry air pressure, and temperature, an application on a hygrothermal behavior of a real wall was carried out for different climatic conditions. For this purpose, a characterization of the heat and moisture properties of the materials constituting the wall made with red brick and cement mortar was carried out in the laboratory. This was used to evaluate experimentally the input parameters of the model as a function of relative humidity. To validate the numerical model, an experimental platform was improved. The wall was set up in a double-climatic chamber with different boundary conditions, and then the temperature and humidity evolutions were recorded using several sensors within the wall thickness. The results have highlighted a good agreement between numerical simulation results and experimental ones.  相似文献   

7.
This paper deals with the numerical solution of a three-dimensional problem of non-isothermal moisture transfer in the anisotropic structure of wood and corresponding wood deformations in convective drying.The simulation is based on the unsteady-state nonlinear diffusion of moisture and heat with respect to the orthotropic nature of wood. The moisture gradient and the temperature gradient are set as driving forces for mass and heat transfer. The model respects the dependence of material coefficients on temperature and moisture, the Soret effect, the Duffour effect and the anisotropic nature of wood. A matrix form of the multiphysics model for FEM solver was derived and numerical simulations were performed.  相似文献   

8.
The issues connected with the determination of thermal and moisture fields in early-age massive concrete are discussed here. The coupled equations, which govern the heat and mass transfer in early-age mass concrete as well as the initial and boundary conditions are presented. Next, the discretization in the space was made using the finite element method; the finite difference method was introduced for the discretization in time. As a result, the matrix form of the heat and moisture transfer equations was obtained. The proposed model was implemented in the original computer program TEMWIL, which can be applied to spatial massive structures in order to forecast the temperature and moisture distribution. Essential thermodiffusion coefficients for early-age concrete were also discussed. Finally, some computations concerning different curing conditions for the massive foundation slab were presented.  相似文献   

9.
Combined multidimensional analysis of heat, air and moisture transport through porous building elements is barely explored in the literature due to many difficulties such as modeling complexity, computer run time, numerical convergence and highly moisture-dependent properties. In this way, a mathematical model considering a combined two-dimensional heat, air and moisture transport through unsaturated building upper corners is presented. In order to improve the discretized model numerical stability, the algebraic equations are simultaneously solved for the three driving potentials: temperature, vapor pressure and moist air pressure gradients. In the results section, the convective effects caused by air stagnation are analyzed in terms of heat flux and mould growth risk for different boundary conditions, showing the importance of a detailed hygrothermal analysis – which is normally disregarded by simulation tools – for accurately predicting building energy consumption, indoor air quality, thermal comfort or mould growth risk.  相似文献   

10.
In this paper, an experimental test facility that permits continuous measurements of transient heat and moisture transfer in porous media is applied to study the vapor boundary layer in cellulose insulation. The experiment measures the relative humidity, temperature and moisture accumulation within the cellulose specimen with a fully developed flow of air at a controlled temperature and humidity provided above the surface. These experimental results are used to verify a mathematical model, which is used to develop an expression for moisture diffusivity (αm) that is analogous to thermal diffusivity, and takes into consideration moisture storage. The moisture diffusivity is used to calculate the vapor density in the boundary layer and the size of vapor boundary layer in cellulose insulation. It is found that the moisture storage effect has a very significant effect on the vapor boundary layer and cannot be ignored. For cellulose insulation, the size of the vapor boundary layer may be over predicted by a factor of ten when moisture storage is neglected.  相似文献   

11.
Heat and mass transfer mechanisms in a cross-flow parallel plate membrane-based enthalpy exchanger for heat and moisture recovery from exhaust air streams are investigated. The flow is assumed laminar and hydrodynamically fully developed, but developing in thermal and concentration boundaries. Contrary to the traditional methods to assume a uniform temperature (concentration) or a uniform heat flux (mass flux) boundary condition, in this study, the real boundary conditions on the exchanger surfaces are obtained by the numerical solution of the coupled equations that govern the transfer of momentum, thermal energy, and moisture in the two cross-flow air streams and through the membrane. The naturally formed heat and mass boundary conditions are then used to calculate the local and mean Nusselt and Sherwood numbers along the cross-flow passages, in the developing region and thereafter. A comparison was made with those results under uniform temperature (concentration) and uniform heat flux (mass flux) boundary conditions, for rectangular ducts of various aspect ratios. An experiment is done to verify the prediction of outlet moisture content.  相似文献   

12.
This paper focuses on a theoretical investigation of the coupling mechanism of heat transfer and liquid moisture diffusion in chitosan-treated porous fibrous material. The porous fibrous materials made of cotton with different porosities are modified by chitosan solution with different concentrations. The moisture regain of the chitosan-treated porous fibrous material increases and the contact angle of the chitosan-treated fiber decreases significantly after modification. For comparison, the simultaneous heat and liquid moisture transfer in porous fibrous materials with different porosities modified by chitosan solution with different concentration are discussed. With specification of initial and boundary conditions, the distributions of the water vapor concentration in the void spaces, the volume fraction of the liquid water in the void spaces, the distribution of the water content in fibers and the temperature changes in chitosan-treated porous fibrous material are obtained numerically. The comparison with the experimental measurements shows the superiority of the numerical model in resolving the coupled heat and mass transfer in chitosan-treated porous fibrous material. Analysis of the computational and experimental results illustrates that the heat and mass transfer in chitosan-treated porous fibrous material is influenced by chitosan concentration and fabric porosity significantly.  相似文献   

13.
This paper presents the experimental results on spruce plywood and cellulose insulation using the transient moisture transfer (TMT) facility presented in Part I [P. Talukdar, S.O. Olutmayin, O.F. Osanyintola, C.J. Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials-Part-I: experimental facility and property data, Int. J. Heat Mass Transfer, in press, doi:10.1016/j.ijheatmasstransfer.2007.03.026] of this paper. The temperature, relative humidity and moisture accumulation distributions within both materials are presented following different and repeated step changes in air humidity and different airflow Reynolds numbers above the materials. The experimental data are compared with numerical data, numerical sensitivity studies and analytical solutions to increase the confidence in the experimental data set.  相似文献   

14.
Most building materials are porous, composed of solid matrix and pores. The time varying indoor and outdoor climatic conditions result heat, air and moisture (HAM) transfer across building enclosures. In this paper, a transient model that solves the coupled heat, air and moisture transfer through multilayered porous media is developed and benchmarked using internationally published analytical, numerical and experimental test cases. The good agreements obtained with the respective test cases suggest that the model can be used to assess the hygrothermal performance of building envelope components as well as to simulate the dynamic moisture absorption and release of moisture buffering materials.  相似文献   

15.
《Applied Thermal Engineering》2007,27(2-3):501-508
Based on the conjugate gradient method, this study presents a means of solving the inverse boundary value problem of coupled heat and moisture transport in a double-layer hollow cylinder. While knowing the temperature and moisture history at the measuring positions, the unknown time-dependent contact heat and mass transfer coefficients can be simultaneously determined. It is assumed that no prior information is available on the functional form of the unknown coefficients. The accuracy of this inverse heat and moisture transport problem is examined by using the simulated exact and inexact temperature and moisture measurements in the numerical experiments. Results show that excellent estimation on the time-dependent contact heat and mass transfer coefficients can be simultaneously obtained with any arbitrary initial guesses.  相似文献   

16.
A two-dimensional mathematical model for evaluating the simultaneous heat and moisture migration in porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The numerical solution was based on the control volume finite difference technique with fully implicit scheme in time. Two validation experiments were developed in this study. The evolution of transient moisture distributions in both one-dimensional and two-dimensional cases was measured. A comparison between experimental results and those obtained by the numerical model proves that they are fully consistent with each other. The model can be easily integrated into a whole building heat, air and moisture transfer model. Another main advantage of the present numerical method lies in the fact that the required moisture transport properties are comparatively simple and easy to determine.  相似文献   

17.
18.
A model of simultaneous heat and mass transfer through a porous material is presented to explain transient moisture sorption by paper sheets from humid air. There are three primary resistances to moisture transport: (1) diffusion through an external boundary layer; (2) diffusion through the pore system and, (3) diffusion from the pore system into the fibers. It is found that diffusion through the fiber phase perpendicular to the plane of the sheet is not significant for the moisture content range considered here. The mass transport model is able to predict the results of transverse moisture gradient experiments which show that moisture content gradients in paper are not as large as previously thought during transient periods. The model shows that the sigmoidal temperature response of paper to a linear change of relative humidity is due to non-linearities of the moisture content isotherm and heat of sorption.  相似文献   

19.
Periodic solution of the simultaneous heat and mass transfer equations has been obtained for a homogeneous building component in a plane geometry. Calculations for January and June months of New Delhi show that moisture distribution over one day cycle is essentially in steady state where as the temperature distribution changes with time especially when outside and inside temperature difference becomes less. With increasing initial moisture content the temperature difference between outside and inside tends to be decreasing showing that the solution will be highly sensitive to the assumed boundary conditions.  相似文献   

20.
The efficacy of full-building radiation barriers for use in climate control has been analyzed both analytically and experimentally. The mutually reinforcing results suggest that heat transfer through corrugated metal roofs can be dramatically reduced through the use of inexpensive, highly reflective sheets. The experiments were performed on two types of structures, one with a single metal roof and the other fabricated with a dual-roof system. In both cases, it was found that the radiative barriers provide excellent insulation. The reduction of heat transfer from the roof to the building proper was determined both analytically and through experiment. The excellent agreement between the two solution methods suggest that either technique is sufficient for future use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号