共查询到20条相似文献,搜索用时 0 毫秒
1.
Brian Donnelly Tadhg S. O’Donovan Darina B. Murray 《Applied Thermal Engineering》2009,29(7):1319-1326
The presence of a rising bubble in a fluid can greatly enhance heat transfer from adjacent heated surfaces such as in shell and tube heat exchangers and chemical reactors. One specific case of this is when a bubble impacts and slides along the surface. The result is heat transfer enhancement by two main mechanisms: first, the bubble itself acting as a bluff body, and second, the wake generated behind the bubble leads to increasing mixing. The current research is concerned with measuring the heat transfer from a submerged heated surface that is subject to a sliding bubble flow. An ohmically heated 25 μm thick stainless steel foil, submerged in a water tank, forms the test surface. An air bubble is injected onto the lower surface of the test plate, it slides along its length and the effects are monitored by two methods. Thermochromic liquid crystals (TLC’s) are used in conjunction with a high speed camera to obtain a time varying 2D temperature map of the test surface. A second synchronised camera mounted below the foil records the bubble motion. Tests are performed at angles of 10°, 20° and 30° to the horizontal. This paper reports on the enhancement of the heat transfer due to the bubble. It has been found that the angle made between the heated surface and the horizontal influences heat transfer by changing the bubble’s motion. In general, a steeper angle leads to a higher bubble velocity, which results in greater heat transfer enhancement. 相似文献
2.
3.
《International Journal of Heat and Mass Transfer》1986,29(6):879-887
The phenomena of conjugate unsteady heat transfer from a spherical droplet or particle moving in a continuous fluid medium is numerically investigated. The energy equation is solved for a spherical droplet using the implicit, finite-difference method of alternating directions (ADI). In this study, the volumetric heat capacities of the two phases are of comparable magnitude but not necessarily equal to each other and the value of the thermal diffusivities of the two phases are set equal to each other. The range of Péclet numbers investigated are : 50⩽ Pe ⩽ 1000, with ratios of volumetric heat capacities, (interior to exterior) varying between 0.333 and 3.0. The velocities used in the convective terms are those corresponding to low Reynolds number flow. It was found that the dimensionless temperature profile asymptotically approaches a steady-state value that is independent of the initial profile in the droplet. 相似文献
4.
Stagnation point calculations, including the effects of liquid phase heat transfer and finite rate evaporation kinetics, are presented for the case of a high Reynolds number flow over a vaporizing droplet. A correlation is developed to compute the entire droplet vaporization rate from the stagnation point results. Numerical emphasis is placed on high temperature, rapid vaporization processes such as occur in flight vehicle engines, and sufficient calculations are presented to allow estimates for any given case to be made. 相似文献
5.
6.
This paper proposes a novel technique that can augment heat transfer but nevertheless can reduce pressure-loss in a fin-tube heat exchanger with circular tubes in a relatively low Reynolds number flow, by deploying delta winglet-type vortex generators. The winglets are placed with a heretofore-unused orientation for the purpose of augmentation of heat transfer. This orientation is called as “common flow up” configuration. The proposed configuration causes significant separation delay, reduces form drag, and removes the zone of poor heat transfer from the near-wake of the tubes. This enhancement strategy has been successfully verified by experiments in the proposed configuration. In case of staggered tube banks, the heat transfer was augmented by 30% to 10%, and yet the pressure loss was reduced by 55% to 34% for the Reynolds number (based on two times channel height) ranging from 350 to 2100, when the present winglets were added. In case of in-line tube banks, these were found to be 20% to 10% augmentation, and 15% to 8% reduction, respectively. 相似文献
7.
The effect of oscillations on heat transfer at vertical surfaces is investigated and a model is developed that predicted both the transient and time average heat transfer rates. The transient behavior of the heat transfer indicates the presence of an oscillatory component superimposed on a larger steady one that does not reach zero during flow reversal. This was explained in terms of the interaction between a “quasi-steady oscillatory” mechanism near the leading edge, and a “pseudo-steady diffusive” far from it. The analysis further revealed that the time average heat transfer rate can be adequately estimated using a mixed “forced-natural” convections correlation, with the forced convection component estimated based on the time average oscillatory Reynolds number Rev = awL/ν. The agreement between the model predictions and the experimental measurements makes it applicable for predicting heat transfer characteristics and velocity fluctuations near heated vertical surfaces in presence of oscillatory motion. The model is also applicable for predicting heat transfer rates under conditions where oscillatory motion is used to achieve specificity in temperature control without affecting process residence time, such as in biomedical and biochemical applications. The modest heat transfer enhancement (<2) due to oscillatory motion is attributed to the small convective term in the energy equation, which is consistent with previous investigations where increasing the axial temperature gradient in presence of oscillatory motion was shown to achieve much higher heat transfer enhancement. 相似文献
8.
In this study, the forces affecting the motion of particle clusters near the wall of a CFB were theoretically analysed. The motion trajectory and the contact time of clusters were determined from the proposed model for two cases, steel ball having density of 6980 kg m?3 and sand having density of 2500 kg m?3. Computational results showed that the construction and operational parameters such as the bed equivalent diameter, the gas velocity and the bed temperature have great influence on the contact time of clusters. Based on analysis of the contact time of clusters, a theoretical model was developed for predicting the particle–gas convection heat transfer coefficient. The results were compared with experiments and were a quite agreement with the measured data in the open literature which suggests that the theoretical analysis conducted in this work can very well describe the convection heat transfer in a CFB. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
9.
《International Journal of Heat and Mass Transfer》1987,30(9):1895-1905
This paper discusses the transient heat transfer to a water droplet on heated surfaces considering a surface temperature change, in the contact period when the droplet is in contact with them. The initial surface temperature ranges from the lowest limit of the nucleate boiling region to the Leidenfrost point. Attention is paid to the two parts of the contact period : the waiting period before the onset of the first bubbling and the successive boiling period after this onset. Our proposal of transient heat transfer is based on some assumptions backed up by theoretical and experimental considerations—a theory of the first bubbling by Michiyoshi and a few experimental results from our previous papers and other works. 相似文献
10.
11.
12.
AbstractTo better understand the droplet impact on the liquid film with vapor bubbles in spray cooling, a two-dimensional symmetric numerical model is set up using the Coupled Level Set and Volume of Fluid method (CLSVOF). Three simulative cases are taken, considering the effects of film thickness and the presence of vapor bubbles or not. The main purposes of this paper are to investigate the evolution of vapor bubbles during droplet impact and to identify the effect of vapor bubbles on convection heat transfer. The results indicate that vapor bubbles will detach from the wall and break up at the surface of the liquid film during droplet impact, for a thinner film, later a “sawtooth” liquid film appears at the non-impact region. However, for a thicker film, no bubbles rupture and the detached bubbles will flow inside the liquid film and then some will merge into larger bubbles. In the presence of vapor bubbles, the crater radius is larger for a thicker liquid film. The presence of vapor bubbles will facilitate the subcooled droplet to spread to the heated wall, leading to a substantial increase in surface heat flux. 相似文献
13.
Effects of droplet characteristics of mist/air cooling on heat transfer for three pin-fin structures are investigated. The round-tip pin-fin structure is newly proposed with partial detachment from one endwall with a round-shaped tip structure. A flat-tip pin-fin with partial detachment and a traditional pin-fin with full attachment serve as references. Reynolds-averaged Navier-Stokes equations and the shear-stress-transport turbulence model are applied. Influences of initial mist temperature, initial mist diameter and initial mist velocity are analyzed in the Reynolds number range 15,000 to 50,000. The round-tip pin-finned channel has highest heat transfer coefficient and lowest pressure loss among the structures. Heat transfer enhancement increases first gradually and then decreases sharply with increasing initial mist diameter but an optimal diameter exists for the highest Nusselt numbers. Nusselt number decreases monotonically with increasing initial mist temperature. Droplet movement and heat transfer are nearly independent of initial mist velocity. 相似文献
14.
The purpose of this paper is to summarize the important studies in the area of impingement heat transfer with or without phase change, with emphasis on the research conducted at Beijing Polytechnic University mainly with circular jets. Heat transfer characteristics of single phase jets are discussed in detail. Comment is presented on boiling heat transfer of impinging jets for steady and transient states. Some special colling configurations of two-phase jets are also introduced. 相似文献
15.
为了研究变速运动对相变胶囊的强化传热效果,选用十六烷为相变材料,黄铜为壳制备圆柱形相变胶囊,利用曲柄摇杆往复装置实现变速运动并搭建实验平台;实验设计相变胶囊在蓄、放热过程中温度的变化范围为10~30 ℃,变速运动的方向为沿胶囊轴向或径向往复运动,振幅为6~12.5 mm,频率为1.55~3.78 Hz,通过测量均匀分布在胶囊内部轴线上8个测点的温度数据分析变速运动的方向、振幅和频率对胶囊蓄、放热效果的影响。实验结果表明:变速运动显著增强了相变胶囊的换热效果,在实验范围内,相比于静止状态,换热系数最大可增加35.6%;胶囊沿径向运动比沿轴向运动强化换热效果更好,沿径向运动时换热时间最多可缩短26.7%;不同工况下胶囊的放热时间均高于蓄热时间,增加振幅和频率可以有效提高蓄、放热效率且对蓄热过程的影响更加显著。 相似文献
16.
In this paper, we have investigated the peristaltic motion with heat and mass transfer through a vertical channel divided into two equal regions, the right region filled with a clear non-Newtonian fluid obeying the Williamson model and the left region with a nano-Williamson fluid. The system is stressed by a gravity force with a uniform external magnetic field. The problem is modulated mathematically with a system of coupled nonlinear partial differential equations that describe the velocities, temperatures, and concentration of the fluids. The system of nondimensional, nonlinear, and partial differential equations is solved analytically with the homotopy perturbation method after using the approximations of low Reynolds number and long wavelength. The obtained solutions are functions of the physical parameters of the problem. Then, the effects of these parameters on velocities, temperatures, and concentration are discussed numerically and illustrated graphically through a set of figures. It is found that the parameters play an important role in controlling the solutions. It is shown that the stream function decreases on the left side and increases on the right side with an increase in the Wissenberger parameter and thermal conductivity ratio. Also, the temperature in the two regions increases with an increase in the thermophoretic parameter, whereas it decreases with an increase in the Brownian motion parameter. Furthermore, the concentration increases with an increase in the Brownian motion parameter and decreases with an increase in the thermophoretic parameter. 相似文献
17.
Siyoung JeongSrinivas Garimella 《International Journal of Heat and Mass Transfer》2002,45(7):1445-1458
A model for a horizontal tube absorber using LiBr/water as the working fluid was developed to predict heat and mass transfer in falling-film and droplet mode flow. In the analysis the effect of incomplete wetting is considered by introducing the wetting ratio. To validate the developed model a series of calculations is carried out under the same conditions as in experiments performed by other investigators. The simulation results for temperature, concentration variations, and heat and mass transfer rates are presented and compared with these experimental data. The effects of wetting ratio and solution flow rate on cooling capacity are discussed in detail. 相似文献
18.
19.
This study aims to assess for a Stirling engine the influence of the overall heat transfer coefficient variation on the optimum state and on the optimum distribution of the heat transfer surface conductance or area among the machine heat exchangers. The analysis is based on a Stirling machine optimization method, previously elaborated, which is now applied to a cycle with total heat regeneration. The method was conceived for an irreversible cycle with heat transfer across temperature differences at the source and the sink, and heat losses between the hot-end and the cold-end of the engine. Source and sink of finite thermal capacity as well as thermostats are considered. The new approach considers a linear variation of the overall heat transfer coefficient of the machine heat exchangers with respect to the local temperature difference. A comparison of the optimum state and the optimum distribution of the heat transfer surface conductance or area among the heater and the cooler is made for several cases. 相似文献
20.
《International Journal of Heat and Mass Transfer》2006,49(21-22):4231-4249
The impact of a subcooled water and n-heptane droplet on a superheated flat surface is examined in this study based on a three-dimensional model and numerical simulation. The fluid dynamic behavior of the droplet is accounted for by a fixed-grid, finite-volume solution of the incompressible governing equations coupled with the 3-D level-set method. The heat transfer inside each phase and at the solid–vapor/liquid–vapor interface is considered in this model. The vapor flow dynamics and the heat flux across the vapor layer are solved with consideration of the kinetic discontinuity at the liquid–vapor and solid–vapor boundaries in the slip flow regime. The simulated droplet dynamics and the cooling effects of the solid surface are compared with the experimental findings reported in the literatures. The comparisons show a good agreement. Compared to the water droplet, it is found that the impact of the n-heptane droplet yields much less surface temperature drop, and the surface temperature drop mainly occurs during the droplet-spreading stage. The effects of the droplet’s initial temperature are also analyzed using the present model. It shows that the droplet subcooling degree is related closely to the thickness of the vapor layer and the heat flux at the solid surface. 相似文献