首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the numerical study of transient conjugate heat transfer in a high turbulence air jet impinging over a flat circular disk. The numerical simulation of transient, two-dimensional cylindrical coordinate, turbulent flow and heat transfer is adopted to test the accuracy of the theoretical model. The turbulent governing equations are resolved by the control-volume based finite-difference method with a power-low scheme, and the well-known low-Re κω turbulence model to describe the turbulent structure. The SIMPLE algorithm is adopted to solve the pressure–velocity coupling. The parameters studied include turbulent flow Reynolds number (Re = 16,100–29,600), heated temperature of a circular disk (Th = 373 K) or heat flux (q = 63–189 kW/m2), and orifice to heat-source spacing (H/D = 4–10). The numerical results of the transient impinging process indicate that the jet Reynolds number has a significant effect on the hydrodynamics and heat transfer, particularly in the stagnation region of an impinging jet. High turbulence values lead to greater heat transfer coefficients in the stagnation region and cause a bypass of the laminar-to-turbulent transition region in the wall jet region. Induced turbulence from the environment around the jet also influences the variation of the stagnation heat transfer. The modeling approach used here effectively captures both the stagnation region behavior and the transition to turbulence, thus forming the basis of a reliable turbulence model.  相似文献   

2.
Two-phase flow patterns of nitrogen gas and aqueous CuO nanofluids in a vertically capillary tube were investigated experimentally. The capillary tube had an inner diameter of 1.6 mm and a length of 500 mm. Water-based CuO nanofluid was a suspension consisted of water, CuO nanoparticles and sodium dodecyl benzol sulphate solution (SDBS). The mass concentration of CuO nanoparticles varied from 0.2 wt% to 2 wt%, while the volume concentration of SDBS varied from 0.5% to 2%. The gas superficial velocity varied from 0.1 m/s to 40 m/s, while the liquid superficial velocity varied from 0.04 m/s to 4 m/s. Experiments were carried out under atmospheric pressure and at a set temperature of 30 °C. Compared with conventional tubes, flow pattern transition lines occur at relatively lower water and gas flow velocities for gas–water flow in the capillary tube. While, flow pattern transition lines for gas–nanofluid flow occur at lower liquid and gas flow velocities than those for gas–water in the capillary tube. The effect of nanofluids on the two-phase flow patterns results mainly from the change of the gas–liquid surface tension. Concentrations of nanoparticles and SDBS have no effects on the flow patterns in the present concentration ranges.  相似文献   

3.
The work presents the results of numerical investigation of the flow structure and heat transfer of impact mist jet with low concentration of droplets (ML1 ? 1%). The downward gas-droplets jet issued from a pipe and strikes into at a center of the circular target wall. Mathematical model is based in the solution to RANS equations for the two-phase flow in Euler approximation. For the calculation of the fluctuation characteristics of the dispersed phase equations of Zaichik et al. (1997) [35] model were applied. Predictions were performed for the distances between the nozzle and target plate x/(2R) = 1–10 and the initial droplets size (d1 = 5–100 μm) at the fixed Reynolds number based on the nozzle diameter, Re = 26,600. Addition of droplets causes significant increase of heat transfer intensity in the vicinity of the jet stagnation point compared with the one-phase air impact jet.  相似文献   

4.
An experiment has been carried out to study the phase split of water–nitrogen two-phase flow through a horizontal T-junction with a square cross section (500 μm × 500 μm), focusing on the effect of flow pattern. By comparing the results of slug, slug–annular and annular flows, it is shown that phase split characteristic of micro-T-junction highly depends on inlet flow pattern. When the inlet flow is a slug flow, it takes on gas rich in side branch. But when the inlet flow shifts to an annular flow, the side branch is rich in liquid. For an slug–annular flow, the curves show transitional characteristics. The effect of superficial velocities on the phase split of each flow pattern is considered as following: the liquid taken off decreases with an increase of liquid superficial velocity and increases with an increase of gas superficial velocity.The results have been compared to that of a 500 μm T-junction with a circular cross section. It is found that the square T-junction shows more liquid taken off at slug flow and slug–annular flow. While, at annular flow, the liquid taken off increases slower at high gas taken off in square T-junction due to cross section effect.  相似文献   

5.
This study presents the numerical simulation of three-dimensional incompressible steady and laminar and turbulent fluid flow of a trapezoidal micro-channel heat sink (MCHS) using CuO/water nanofluid as a cooling fluid. Navier–Stokes equations with conjugate energy equation are discretized by the finite-volume method. CFD predictions of laminar and turbulent forced convection of CuO/water nanofluids by single-phase and two-phase models (mixture model) are compared. The parameters studied include the particle volume fraction (ϕ = 0.204 %, 0.256%, 0.294% and 0.4%), and the volumetric flow rate (V˙=10mL/min, 15 mL/min and 20 mL/min). Comparisons of the thermal resistance predicted by the single-phase and two-phase models with corresponding experimental results show that the two-phase model is more accurate than the single-phase model. In the laminar flow, the thermal resistance of nanofluids is smaller than that of the water, which decreases as the particle volume fraction and the volumetric flow rate increase. In addition, the pressure drop of both nanofluid-cooled MCHS and pure water-cooled MCHS is discussed. For the laminar flow case, the pressure drop increases slightly for nanofluid-cooled MCHS.  相似文献   

6.
In the present work, characteristics of heat transfer, flow resistance, and overall thermo-hydraulic performance of turbulent airflow in a circular tube fitted with louvered strip inserts were investigated through numerical simulation. Our main attention was paid to the effects of the slant angle and pitch of the turbulators. The results show that the Nusselt number is augmented by 2.75–4.05 times (Nu = 108.71–423.87) as that of the smooth tube. The value of performance evaluation criterion (PEC) lies in the range of 1.60–2.05, which demonstrates that the louvered strip insert has a very good overall thermo-hydraulic performance. Moreover, the computational results indicate that larger slant angle and small pitch can effectively enhance the heat transfer rate, but also increase the flow resistance. Furthermore, it is noted that the Nusselt number and friction factor are more sensitive to the slant angle than the inserts pitch. Comparatively steady and good overall thermo-hydraulic performance can be obtained at a moderate slant angle together with a small pitch. All these data show that the louvered strip is a promising tube insert which would be widely used in heat transfer enhancement of turbulent flow.  相似文献   

7.
A computational investigation of three-dimensional mean flow field resulting due to the interaction of a rectangular heated jet issuing into a narrow channel crossflow has been reported in the present paper. The jet discharge slot spans more than 55% of the crossflow channel bed, leaving a small clearance between the jet edge and sidewalls. Such flow configurations are encountered in several industrial processes such as mixing product streams, drying product streams, etc. The objective of the present work was to carry out a detailed investigation of the mean flow field and flow structure, which could not be obtained in a similar two-dimensional experimental work reported in the literature. The commercial code FLUENT 6.2.16 based on the finite volume method was used to predict the mean flow and temperature fields for the jet to crossflow velocity ratio (R) = 6. Two different turbulence models, namely, Reynolds-stress transport model (RSTM) and the standard kε model, were used for the computations. Different terms of the Reynolds-stress transport equation were modeled based on the proposals in the literature that are appropriate for the important flow features of the present configuration. Important flow features predicted by the two models, such as the formation of different vortical structures and their effects on the flow field are discussed. Some predicted results are compared with the available experimental data reported in the literature. The predicted mean and turbulent flow properties are shown to be in good agreement with the experimental data. However, the performance of RSTM is found to be better than that of the standard kε model.  相似文献   

8.
This study presents single-phase and two-phase pressure drop data with oil concentration C = 0, 1, 3 and 5% in a copper wavy tube having an inner diameter of 3.25 mm and a curvature radius of 6.35 mm. The ratio of frictional factor between U-bend in wavy tube and straight tube (fC/fS) is about 1.5 to 2.5 for Re = 2500  25000. The effect of secondary flow is very crucial in the U-bend that it increases the pressure drop considerably. However, the effect of oil concentration on friction factor is negligible provided the properties are based on mixture. The ratio between two-phase pressure gradients of U-bend and straight tube is about 3. This ratio is increased with oil concentration and vapor quality. The oil effect on two-phase pressure drop is especially pronounced at high vapor quality because the effective oil concentration in liquid mixture is increased with vapor quality. The frictional two-phase multiplier for straight tube can be fairly correlated by using the Chisholm correlation. A modified two-phase friction factor based on the Geary correlation is also utilized to predict the frictional two-phase pressure gradient in U-bend. The predictions give a good agreement to the present oil–refrigerant data with a mean deviation of 12.92%.  相似文献   

9.
Flow separations occur in various engineering applications. Computational simulation by using standard k-ε turbulence model was performed to investigate numerically the characteristic of backward-facing step flow in a concentric configuration. This research is focused on the variation of Reynolds number, heat flux and step height in a fully developed turbulent air flow. The design consists of entrance tube, and inner and outer tubes at the test section. The inner tube is placed along the entrance tube at the test section with an outer tube to form annular conduit. The entrance tube diameter was varied to create step height, s of 18.5 mm. The Reynolds number was set between 17,050 and 44,545 and heat flux was set between 719 W/m2 and 2098 W/m2 respectively. It is observed that the higher Reynolds number with step flow contributes to the enhancement of heat transfer. The reattachment point for q = 719 W/m2 is observed at 0.542 m, which is the minimum surface temperature. The experimental data shows slightly lower distribution of surface temperature compared to simulation data. As for the same case in experimental result, the minimum surface temperature is obtained at 0.55 m. The difference between numerical and experimental result is 0.008 m. Finally, it can be inferred that utilizing the computational fluid dynamic package software, agreeable results could be obtained for the present research.  相似文献   

10.
This paper explores the single-phase and two-phase cooling performance of a hybrid micro-channel/slot-jet module using HFE-7100 as working fluid. Three-dimensional numerical simulation using the kε turbulent model is used to both assess the single-phase performance and seek a geometry that enhances heat removal capability and surface temperature uniformity while decreasing mean surface temperature. This geometry is then tested experimentally to validate the numerical findings and aid in the development of correlations for both the single-phase and two-phase heat transfer coefficients. The hybrid module is shown to maintain surface temperature gradients below 2 °C for heat fluxes up to 50 W/cm2. Even without phase change, the hybrid module is capable of dissipating heat fluxes as high as 305.9 W/cm2. Highly accurate single-phase correlations are developed using a superpositioning technique that consists of assigning a different heat transfer coefficient for each portion of the heat transfer area based on the dominant heat transfer mechanism for that portion. Increasing subcooling and/or flow rate is shown to delay the onset of nucleate boiling to a higher heat flux and higher surface temperature, as well as enhance critical heat flux (CHF). A correlation previously developed for hybrid micro-channel/micro-circular-jet module is deemed equally effective at predicting two-phase heat transfer data for the present hybrid module.  相似文献   

11.
The equilibrium Eulerian method [J. Ferry, S. Balachandar, A fast Eulerian method for disperse two-phase flow, Int. J. Multiphase Flow 27 (7) (2001) 1199–1226] provides an accurate approximation to the velocity field of sufficiently small dispersed particles in a turbulent fluid. In particular, it captures the important physics of particle response to turbulent flow, such as preferential concentration and turbophoresis. It is therefore employed as an efficient alternative to solving a PDE to determine the particle velocity field. Here we explore two possible extensions of this method to determine the particle temperature field accurately and efficiently, as functions of the underlying fluid velocity and temperature fields. Both extensions are theoretically shown to be highly accurate for asymptotically small particles. Their behavior for finite-size particles is assessed in a DNS of turbulent channel flow (Reτ = 150) with a passive temperature field (Pr = 1). Here it is found that although the order of accuracy of the two extensions is the same, the constant factor by which one is superior to the other can be quite large, so the less accurate extension is appropriate only in the case of a very small mechanical-to-thermal response time ratio.  相似文献   

12.
The present paper investigates the three-dimensional isothermal solid–gas turbulent flow and deposition process in a deposition chamber with numerical methods. The chamber diffusive angle (α) is varied to examine its influences on the flow fields as well as deposition performance. The investigated cases include diffusive angles equal to 5°, 9° and 15°. The results show that diffusive angles have profound effects on the recirculation structure in flow fields, and accordingly, the particle motion and deposition performance are significantly influenced. Among the three diffusive angle cases, both of the particle deposition efficiency and average impact velocity are largest in the α = 5° case; nonetheless, the deposition on the substrate exhibits the most non-uniform distribution in the case. These results provide elementary and worthwhile information for the practical design of the deposition chamber.  相似文献   

13.
The turbulent heat transfer and flow resistance in an enhanced heat transfer tube, the DDIR tube, were studied experimentally and numerically. Water was used as the working fluid with Reynolds numbers between 15,000 and 60,000. The numerical simulations solved the three dimensional Reynolds-averaged Navier–Stokes equations with the standard k-ε model in the commercial CFD code, Fluent. The numerical results agree well with the experimental data, with the largest discrepancy of 10% for the Nusselt numbers and 15% for the friction factors. The heat transfer in the DDIR tube is enhanced 100  120% compared with a plain tube and the pressure drop is increased 170  250%. The heat transfer rate for the same pumping power is enhanced 30  50%. Visualization of the flow field shows that in addition to the front and rear vortices around the ribs, main vortices and induced vortices are also generated by the ribs in the DDIR tube. The rear vortex and the main vortex contribute much to the heat transfer enhancement in the DDIR tubes. Optimum DDIR tube parameters are proposed for heat transfer enhancement at the same pumping power.  相似文献   

14.
Numerical study of the effect of confinement on a flow structure and heat transfer in an impinging mist jets with low mass fraction of droplets (ML1 ? 1%) were presented. The turbulent mist jet is issued from a pipe and strikes into the center of the flat heated plate. Mathematical model is based on the steady-state RANS equations for the two-phase flow in Euler/Euler approach. Predictions were performed for the distances between the nozzle and the target plate x/(2R) = 0.5–10 and the initial droplets size (d1 = 5–100 μm) at the varied Reynolds number based on the nozzle diameter, Re = (1.3–8) × 104. Addition of droplets causes significant increase of heat transfer intensity in the vicinity of the jet stagnation point compared with the one-phase air impinging jet. The presence of the confinement upper surface decreases the wall friction and heat transfer rate, but the change of friction and heat transfer coefficients in the stagnation point is insignificant. The effect of confinement on the heat transfer is observed only in very small nozzle-to-plate distances (H/(2R) < 0.5) both in single-phase and mist impinging jets.  相似文献   

15.
An experimental and numerical study of the local structure of downward gas–liquid flow in a vertical pipe with 20-mm inner diameter is reported. In the experiment, the electrodiffusion technique was used in combination with electrical conductivity measurements. To examine the effect of gas-phase dispersion on flow characteristics, two different gas–liquid mixers were used capable of producing large-diameter (>1 mm) and small-diameter (<1 mm) gas bubbles at identical rate characteristics of the flow. The unified heterogeneous-medium mechanics approach was used to develop, in the Eulerian two-velocity approximation, a calculation model for downward turbulent liquid/air bubble flows. It is shown that, as the volumetric gas flow rate of the mixture at the inlet to the pipe increases, local maxima of continuous phase velocity and bubble concentration emerge in the near-wall zone of the flow, with liquid turbulence suppressed in the wall zone and enhanced in the core of the flow.  相似文献   

16.
An experimental and numerical study is conducted to investigate turbulent slot jet impingement cooling characteristics on concave plates with varying surface curvature. Air is used as the impingement coolant. In the experimental work, a slot nozzle specially designed with a sixth degree polynomial in order to provide a uniform exit velocity profile was used. The experiments were carried out for the jet Reynolds numbers in the range of 3423  Re  9485, the dimensionless nozzle-to-surface distance range of 1  H/W  14 for dimensionless values of the curvature of impinging surfaces in the range of R/L = 0.5, 0.725, and 1.3 and a flat impingement surface. Constant heat flux was applied on the plates. Numerical computations were performed using the k-ε turbulence model with enhanced wall functions. For the ranges of the governing parameters studied, the stagnation, and local and average Nusselt numbers have been obtained both experimentally and numerically. The numerical results showed a reasonable agreement with the experimental data.  相似文献   

17.
18.
This article presents the condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes experimentally. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2000 mm in length. A smooth copper tube and corrugated copper tubes having inner diameters of 8.7 mm are used as an inner tube. The outer tube is made from smooth copper tube having an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The test conditions are performed at saturation temperatures of 40–50 °C, heat fluxes of 5–10 kW/m2, mass fluxes of 200–700 kg/m2 s, and equivalent Reynolds numbers of 30000–120000. The Nusselt number and two-phase friction factor obtained from the corrugated tubes are significantly higher than those obtained from the smooth tube. Finally, new correlations are developed based on the present experimental data for predicting the Nusselt number and two-phase friction factor for corrugated tubes.  相似文献   

19.
Rates of liquid–solid mass transfer and heat transfer (by analogy) were studied in an annular reactor with a packed annulus. Two types of inert fixed bed packing were used namely, cylinders and Raschig rings. The electrochemical technique which involves measuring the limiting current of the cathodic reduction of ferricyanide ion in a large excess of sodium hydroxide was used in the present study. Variables studied are packing geometry, packing size, gas and liquid superficial velocities and physical properties of the solution. The presence of inert fixed bed in the annulus enhanced the rate of mass transfer and the rate of heat transfer at the outer wall of the inner cylinder by a factor ranging from 1.1 to 6.1 depending on the packing geometry, particle size and both the liquid and gas superficial velocities. The present data were compared with the previous data on the packed annulus with inert spherical packing. For single phase liquid flow the mass transfer enhancement ratio increases in the order: Raschig rings > cylinders > spheres, while in the case of two phase flow, spheres gave the highest enhancement ratio. For the present range of conditions it was found that, as the particle size decreases the enhancement ratio increases. All data were correlated in the form of dimensionless equations.Possible practical applications of the present study such as design of fixed bed reactor internal cooler, prediction of the rate of diffusion controlled corrosion of vertical tube cooler imbedded in a fixed bed reactor and design of annular double tube catalytic and electrochemical reactors with a fixed bed turbulence promoter were highlighted.  相似文献   

20.
An investigation of the flow field and heat transfer characteristics of a slot turbulent jet impinging on a semi-circular concave surface with uniform heat flux has been carried out numerically in this study. The turbulent governing equations are solved by a control-volume-based finite-difference method with a power-law scheme and the well-known kε turbulence model and its associate wall function to describe the turbulent structure. In addition, a body-fitted curvilinear coordinate system is employed to transform the physical domain into a computational domain.Numerical computations have been conducted with variations of jet exit Reynolds number Re2B (5920 ? Re2B ? 23,700), dimensionless jet-to-surface distance H/B (0.5 ? H/B ? 12), dimensionless jet width B/D (0.033 ? B/D ? 0.05) and the heat flux q″ (1663 W/m2 ? q ? 5663 W/m2). The theoretical model developed is validated by comparing the numerical predictions with available experimental data in the literature. The variations of local Nusselt numbers along the semi-circular concave surface decrease monotonically from its maximum value at the stagnation point. The numerical results show that the local Nusselt numbers are reasonably predicted with a maximum discrepancy within 15%. As the Reynolds number fixes, the effect of the impingement distance (H/B) on the average Nusselt (Nuavg) is not significant except at low H/B = 0.5. This study provides fundamental insight into turbulent slot jet impingement cooling on the semi-circular concave surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号