首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments are conducted here to investigate how the channel size affects the saturated flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured heat transfer data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the gap of the duct. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases slightly at increasing R-134a mass flux. Moreover, the bubble departure frequency increases at reducing duct size mainly due to the rising shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Correlation for the present saturated flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

2.
Experiments are conducted here to investigate how the channel size affects the R-407C saturated flow boiling heat transfer and associated bubble characteristics in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the duct gap. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases noticeably at increasing R-407C mass flux. Moreover, the bubble departure frequency increases at reducing duct size and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Meanwhile comparison of the present heat transfer data for R-407C with R-134a in the same duct and with some existing correlations is conducted. Furthermore, correlation for the present R-407C saturated flow boiling heat transfer data is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

3.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

4.
An experiment is conducted here to investigate the saturated flow boiling heat transfer characteristics of ozone friendly refrigerant R-410A in a horizontal annular finned duct. Meanwhile the associated bubble characteristics in the duct are also inspected from the flow visualization. The experimental data are presented in terms of saturated flow boiling curves, boiling heat transfer coefficients and flow photos. In addition, empirical correlation equations for the saturated flow boiling heat transfer coefficient and mean bubble departure diameter are proposed. The saturated flow boiling curves show that boiling hysteresis is insignificant in the flow and the wall superheat needed for the onset of nucleate boiling is slightly affected by the refrigerant mass flux. Besides, the boiling curves are mainly affected by the imposed heat flux and refrigerant mass flux. Moreover, the measured saturated flow boiling heat transfer coefficient increases with the imposed heat flux and refrigerant mass flux. Furthermore, at a higher refrigerant mass flux the departing bubbles are smaller.  相似文献   

5.
An experiment is conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and the associated bubble characteristics of refrigerant R-407C in a horizontal narrow annular duct with the gap of the duct fixed at 1.0 and 2.0 mm. The measured boiling curves indicate that the temperature overshoot at ONB is relatively significant for the subcooled flow boiling of R-407C in the duct. Besides, the subcooled flow boiling heat transfer coefficient increases with a reduction in the duct gap, but decreases with an increase in the inlet liquid subcooling. Moreover, raising the heat flux imposed on the duct can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are slighter. Visualization of the subcooled flow boiling processes in the duct reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Raising the imposed heat flux, however, produces positive effects on the bubble population, coalescence and departure frequency. Meanwhile, the present heat transfer data for R-407C are compared with the R-134a data measured in the same duct and with some existing correlations. We also propose empirical correlations for the present data for the R-407C subcooled flow boiling heat transfer and some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density.  相似文献   

6.
Saturated flow boiling heat transfer and the associated frictional pressure drop of the ozone friendly refrigerant R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in a vertical plate heat exchanger (PHE) are investigated experimentally in the study. In the experiment two vertical counter flow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of saturated refrigerant R-410A in one channel receives heat from the downflow of hot water in the other channel. The experimental parameters in this study include the refrigerant R-410A mass flux ranging from 50 to 125 kg/m2 s and imposed heat flux from 5 to 35 kW/m2 for the system pressure fixed at 1.08, 1.25 and 1.44 MPa, which respectively correspond to the saturated temperatures of 10, 15 and 20 °C. The measured data showed that both the boiling heat transfer coefficient and frictional pressure drop increase almost linearly with the imposed heat flux. Furthermore, the refrigerant mass flux exhibits significant effect on the saturated flow boiling heat transfer coefficient only at higher imposed heat flux. For a rise of the refrigerant pressure from 1.08 to 1.44 MPa, the frictional pressure drops are found to be lower to a noticeable degree. However, the refrigerant pressure has very slight influences on the saturated flow boiling heat transfer coefficient. Finally, empirical correlations are proposed to correlate the present data for the saturated boiling heat transfer coefficients and friction factor in terms of the Boiling number and equivalent Reynolds number.  相似文献   

7.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

8.
An experiment is conducted here to investigate the effects of the imposed time periodic refrigerant flow rate oscillation in the form of nearly a triangular wave on refrigeriant R-134a flow boiling heat transfer and associated bubble characteristics in a horizontal narrow annular duct with the duct gap fixed at 2.0 mm. The results indicate that when the imposed heat flux is close to that for the onset of stable flow boiling, intermittent flow boiling appears in which nucleate boiling on the heated surface does not exist in an entire periodic cycle. At somewhat higher heat flux persistent boiling prevails. Besides, the refrigerant flow rate oscillation only slightly affects the time-average boiling curves and heat transfer coefficients. Moreover, the heated wall temperature, bubble departure diameter and frequency, and active nucleation site density are found to oscillate periodically in time as well and at the same frequency as the imposed mass flux oscillation. Furthermore, in the persistent boiling the resulting heated wall temperature oscillation is stronger for a longer period and a larger amplitude of the mass flux oscillation. And for a larger amplitude of the mass flux oscillation, stronger temporal oscillations in the bubble characteristics are noted. The effects of the mass flux oscillation on the size of the departing bubble and active nucleation site density dominate over the bubble departure frequency, causing the heated wall temperature to decrease and heat transfer coefficient to increase at reducing mass flux in the flow boiling, opposing to that in the single-phase flow. But they are only mildly affected by the period of the mass flux oscillation. However, a short time lag in the wall temperature oscillation is also noted. Finally, a flow regime map is provided to delineate the boundaries separating different boiling regimes for the R-134a flow boiling in the annular duct.  相似文献   

9.
Heat transfer and associated frictional pressure drop in the condensing flow of the ozone friendly refrigerant R-410A in a vertical plate heat exchanger (PHE) are investigated experimentally in the present study. In the experiment two vertical counter flow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Downflow of the condensing refrigerant R-410A in one channel releases heat to the upflow of cold water in the other channel. The effects of the refrigerant mass flux, imposed heat flux, system pressure (saturated temperature) and mean vapor quality of R-410A on the measured data are explored in detail. The results indicate that the R-410A condensation heat transfer coefficient and associated frictional pressure drop in the PHE increase almost linearly with the mean vapor quality, but the system pressure only exhibits rather slight effects. Furthermore, increases in the refrigerant mass flux and imposed heat flux result in better condensation heat transfer accompanying with a larger frictional pressure drop. Besides, the imposed heat flux exhibits stronger effects on the heat transfer coefficient and pressure drop than the refrigerant mass flux especially at low refrigerant vapor quality. The friction factor is found to be strongly influenced by the refrigerant mass flux and vapor quality, but is almost independent of the imposed heat flux and saturated pressure. Finally, an empirical correlation for the R-410A condensation heat transfer coefficient in the PHE is proposed. In addition, results for the friction factor are correlated against the Boiling number and equivalent Reynolds number of the two-phase condensing flow.  相似文献   

10.
An experiment is carried out here to investigate the evaporation heat transfer and associated evaporating flow pattern for refrigerant R-134a flowing in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm. In the experiment, the effects of the duct gap, refrigerant vapor quality, mass flux and saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. For the duct gap of 2.0 mm, the refrigerant mass flux G is varied from 300 to 500 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, vapor quality xm from 0.05 to 0.95, and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the gap of 1.0 mm, G is varied from 500 to 700 kg/m2 s with the other parameters varied in the same ranges as that for δ = 2.0 mm. The experimental data clearly show that the evaporation heat transfer coefficient increases almost linearly with the vapor quality of the refrigerant and the increase is more significant at a higher G. Besides, the evaporation heat transfer coefficient also rises substantially at increasing q. Moreover, a significant increase in the evaporation heat transfer coefficient results for a rise in Tsat, but the effects are less pronounced in the narrower duct at a low imposed heat flux and a high refrigerant mass flux. Furthermore, the evaporation heat transfer coefficient increases substantially with the refrigerant mass flux except at low vapor quality. We also note that reducing the duct gap causes a significant increase in hr. In addition to the heat transfer data, photos of R-134a evaporating flow taken from the duct side show the change of the dominant two-phase flow pattern in the duct with the experimental parameters. Finally, an empirical correlation for the present measured heat transfer coefficient for the R-134a evaporation in the narrow annular ducts is proposed.  相似文献   

11.
The evaporation heat transfer experiments were conducted with an oblong shell and plate heat exchanger without oil in the refrigerant loop using R-410A, a mixture of 50 wt% R-32 and 50 wt% R-125 that exhibits azeotropic behavior. An experimental refrigerant loop has been established to measure the evaporation heat transfer coefficient h r of R-410A in a vertical oblong shell and plate heat exchanger. Four vertical counter-flow channels were formed in the oblong shell and plate heat exchanger by four plates having a corrugated trapezoid shape of a 45° chevron angle. The upflow of the boiling R-410A in one channel receives heat from the hot downflow of water in the other channel. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature, and vapor quality of R-410A on the measured data were explored in detail. The results indicate that a rise in the refrigerant mass flux causes an increase in the h r . Raising the imposed wall heat flux was found to slightly improve h r . Finally, at a higher refrigerant saturation temperature, the h r is found to be lower. Based on the present data, an empirical correlation of the evaporation heat transfer coefficient was proposed.  相似文献   

12.
《Applied Thermal Engineering》2002,22(14):1535-1548
In this paper, an analytical study on the influence of thermophysical properties on heat transfer characteristics of two-phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented.Correlations were proposed to predict the thermophysical properties of refrigerant mixtures such as thermal conductivity and viscosity as well as their impact on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R-507, R-404A, R-410A, and R-407C in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition.It was also evident that the proposed improved correlations for predicting the thermophysical properties were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were <±20 %, for the majority of data.  相似文献   

13.
Minsoo Kim 《传热工程》2019,40(12):973-984
ABSTRACT

The present study investigated the evaporation heat transfer coefficients of R-446A, as a low global warming potential alternative refrigerant to R-410A. The evaporation heat transfer coefficients were obtained by measuring the wall temperature of a straight stainless tube and refrigerant pressure. The heat transfer coefficients were measured for the quality range from 0.05 to 0.95, the mass flux from 100 to 400 kg/m2s, heat flux from 10 to 30 kW/m2, and saturation temperature from 5 to 10°C. The evaporation heat transfer coefficient of R-410A was verified by comparing the measured evaporation heat transfer coefficient with the value predicted by the existing correlation. The evaporation heat transfer coefficient of R-446A was measured using a proven experimental apparatus. When the heat flux was 10 kW/m2, the evaporation heat transfer coefficient of R-446A was always higher than that of R-410A. But, when the heat flux was 30 kW/m2, the evaporation heat transfer coefficient of R-446A was measured to be lower than that of R-410A near the dry-out point. The effect of the tube diameter on the R-446A evaporation heat transfer coefficient was negligible. The effect of saturation pressure on the evaporation heat transfer coefficient was prominent in the low quality region where the nucleate boiling was dominant.  相似文献   

14.
In this work, bubble characteristics of periodic evaporation flow with refrigerant R-134a in a horizontal narrow annular pipe were examined experimentally in details. Attention is focused on the time periodic evaporation flow characteristics affected by the mean levels, amplitudes, and periods of the heat flux oscillation. The photos of the R-134a time periodic evaporating flow taken from the duct side are presented to show the change of the dominant two-phase flow pattern in the duct with the experimental parameters. The results show that at the low vapor quality, the bubbles get smaller with time and become less crowded in the duct in the first half of the cycle in which the R-134a heat flux decreases. The changes of the bubble characteristics with the instantaneous heat flux become more pronounced for an increase in the amplitude of the heat flux oscillation. At the very high mean vapor quality the bubble nucleation can be barely seen in the entire periodic cycle since the liquid film covering the heating surface is very thin. In addition, the duct flow is dominated by the annular two-phase flow at all time.  相似文献   

15.
In this paper, an experimental study on the heat transfer characteristics of two-phase flow boiling of alternative azeotropic refrigerant mixtures to R-502 on air/refrigerant horizontal enhanced surface tubing is presented. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of alternatives to R-502; such as R-507, R-404A, R-407B, and R-408A in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture’s pressure drop is a weak function of the mixture’s composition. It was found that the correlations were applicable to the entire heat and mass flux, investigated in the present study for the proposed blends under question. The deviation between the experimental and predicted values for the heat transfer coefficient and pressure drop were less than ±20% and 35%, respectively, for the majority of data.  相似文献   

16.
《Applied Thermal Engineering》2000,20(12):1113-1126
This paper presents an experimental study of two phase flow condensation of some alternative zeotropic refrigerant mixtures to R-22, inside air/refrigerant horizontal enhanced surface tubing. The alternatives considered in this study are; R-507, R-404A, R-407C, and R-408A as well as R-410A. It was evident from the condensation experimental data that R-408A has the highest heat transfer rate compared to the other blends under the investigated range of refrigerant mass flow rates and heat flux. However, when the thermophysical properties are factored in, the condensation data showed that R-410A has the highest heat transfer rate at Reynolds number higher than 2.35E+7 Furthermore, experimental data of two phase condensation pressure gradient data across the test section at different Reynolds numbers showed that R-410A has the highest convective pressure drop among the blends under investigation.  相似文献   

17.
In this paper we present experimental data on heat transfer and pressure drop characteristics at flow boiling of refrigerant R-134a in a horizontal microchannel heat sink. The primary objective of this study was to experimentally establish how the local heat transfer coefficient and pressure drop correlate with the heat flux, mass flux, and vapor quality. The copper microchannel heat sink contains 21 microchannels with 335 × 930 μm2 cross section. The microchannel plate and heating block were divided by the partition wall for the local heat flux measurements. Distribution of local heat transfer coefficients along the length and width of the microchannel plate was measured in the range of external heat fluxes from 50 to 500 kW/m2; the mass flux varied within 200–600 kg/m2-s, and pressure varied within 6–16 bar. The obvious impact of heat flux on the magnitude of heat transfer coefficient was observed. It showed that nucleate boiling is the dominant mechanism for heat transfer. A new model of flow boiling heat transfer, considering nucleate boiling suppression and liquid film evaporation, was proposed and verified experimentally in this paper.  相似文献   

18.
An experiment is carried out here to investigate flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted in the bottom of a horizontal rectangular channel. Besides, three different micro-structures of the chip surface are examined, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The pitch of the fins is equal to the fin width for both surfaces. The effects of the FC-72 mass flux, imposed heat flux, and surface micro-structures of the silicon chip on the FC-72 saturated flow boiling characteristics are examined in detail. The experimental data show that an increase in the FC-72 mass flux causes a delay in the boiling incipience. However, the flow boiling heat transfer coefficient is not affected by the coolant mass flux. But adding the micro-pin-fin structures to the chip surfaces can effectively enhance the single-phase convection and flow boiling heat transfer. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for a rise in the FC-72 mass flux. A higher coolant mass flux results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed at a higher imposed heat flux. We also note that adding the micro-pin-fins to the chips decrease the bubble departure diameter and increase the bubble departure frequency. However, the departing bubbles are larger for the pin-finned 100 surface than the pin-finned 200 surface but the bubble departure frequency exhibits an opposite trend. Finally, empirical equations to correlate the present data for the FC-72 single-phase liquid convection and saturated flow boiling heat transfer coefficients and for the bubble characteristics are provided.  相似文献   

19.
Flow boiling heat transfer of R-134a refrigerant in a circular mini-channel, 600 mm long with a diameter of 1.75 mm, is investigated experimentally in this study. The test section is a stainless steel tube placed horizontally. Flow pattern and heat transfer coefficient data are obtained for a mass flux range of 200–1000 kg/m2 s, a heat flux range of 1–83 kW/m2 and saturation pressures of 8, 10, and 13 bar. Five different flow patterns including slug flow, throat-annular flow, churn flow, annular flow and annular-rivulet flow are observed and the heat transfer coefficient data for different flow patterns are presented. The heat transfer coefficient increases with increasing heat flux but is mostly independent of mass flux and vapour quality. In addition, it is indicated from the experiments that the higher the saturation pressure, the lower is the heat transfer coefficient. Comparisons of the present data with the existing correlations are also presented.  相似文献   

20.
Experiments on transition and flow boiling heat transfer with refrigerant R114 inside a horizontal tube were performed at bubble flow, critical heat flux and in the transition region between bubble flow and film boiling at mass fluxes between 1200 and 4000 kg/m2 s and in the pressure range between 5 and 15 bar. In comparison with pool boiling bubble flow heat transfer depends essentially on the mass flow rates and on the vapor quality. The critical heat flux depends less on the temperature difference than in pool boiling heat transfer and exhibits a maximal and a minimal value as a function of the pressure. The critical heat flux increases with mass flow rate as already shown by Collier. In the region of transition boiling the heat flux over the difference between wall and saturation temperature approaches a horizontal curve. Therefore in this region an evaporator may always be operated under stable conditions and burn out does not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号