首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

2.
For high efficiency and long durability of proton exchange membrane fuel cells (PEMFCs), polymer electrolyte membranes should be kept wet. Reactant gases should be humidified on this account. For the humidification, the PEMFC system uses an external or internal humidifier as a part of balance of plants (BOPs). However, external humidifiers have many disadvantages such as parasitic power loss, system complexity, high cost and bulky volume. As such, efforts have been made to remove the external humidifier or replace it with an advanced humidifier. In this work, to remove a humidifier, humidification by exhaust gas recirculation is investigated by theoretical analysis and experiments with 5-cell stack of an active area 250 cm2. In the theoretical analysis, species conservation equations and energy conservation equation are solved to obtain the O2 concentration, stoichiometric ratio, humidity ratio, temperature, amount of condensed water and so on. With the theoretical results, experiments with 5-cell, 250 cm2 fuel cell stack were carried out in order to analyze the stack performance at the theoretical conditions of the cathode process stream of exhaust gas recirculation.  相似文献   

3.
Two methods of humidifying the anode gas, namely, external and membrane humidification, for a polymer electrolyte membrane fuel (PEMFC) cell are explained. It is found that the water of solvation of protons decreases with increase in the current density and the electrode area. This is due to insufficient external humidification. In a membrane-based humidification, an optimum set of parameters, such as gas flow rate, area and type of the membrane, must be chosen to achieve effective humidification. The present study examines the dependence of water pick-up by hydrogen on the temperature, area and thickness of the membrane in membrane humidification. Since the performance of the fuel cell is dependent more on hydrogen humidification than on oxygen humidification, the scope of the work is restricted to the humidification of hydrogen using Nafion® membrane. An examination is made on the dependence of water pick-up by hydrogen in membrane humidification on the temperature, area and thickness of the membrane. The dependence of fuel cell performance on membrane humidification and external humidification in the anode gas is also considered.  相似文献   

4.
建立气-气增湿器的数学理论模型,并基于Amesim软件建立燃料电池增湿器及空气系统仿真模型,从燃料电池系统层面分析干湿侧不同温度、压力、水含量等输入条件下的干侧出口空气的湿度变化情况,并采用水转移率(water vapor transfer rate,WVTR)对增湿器增湿性能进行评价,结果表明此模型可进行前期验证,能较好地预测汽车运行过程中增湿器的动态响应特性。  相似文献   

5.
This paper presents an experimental study and model validation of an external membrane humidifier for PEM fuel cell humidification control. Membrane humidification behavior was investigated with steady-state and dynamic tests. Steady-state test results show that the membrane vapor transfer rate increases significantly with water channel temperature, air channel temperature, and air flow rate. Water channel pressure has little effect on the vapor transfer rate and thus can be neglected in the system modeling. Dynamic test results reveal that the membrane humidifier has a non-minimum phase (NMP) behavior, which presents extra challenges for control system design. Based on the test data, a new water vapor transfer coefficient for Nafion membrane was obtained. This coefficient increases exponentially with the membrane temperature. The test results were also used to validate a thermodynamic model for membrane humidification. It is shown that the model prediction agrees well with the experimental results. The validated model provides an important tool for external humidifier design and fuel cell humidification control.  相似文献   

6.
Water and thermal management is essential to the performance of proton exchange membrane (PEM) fuel cell system. The key components in water and thermal management system, namely the fuel cell stack, radiator, condenser and membrane humidifier are all modeled analytically in this paper. Combined with a steady-state, one-dimensional, isothermal fuel cell model, a simple channel-groove pressure drop model is included in the stack analysis. Two compact heat exchangers, radiator and condenser are sized and rated to maintain the heat and material balance. The influence of non-condensable gas is also considered in the calculation of the condenser. Based on the proposed methodology, the effects of two important operating parameters, namely the air stoichiometric ratio and the cathode outlet pressure, and three kinds of anode humidification, namely recycling humidification, membrane humidification and recycling combining membrane humidification are analyzed. The methodology in this article is helpful to the design of water and thermal management system in fuel cell systems.  相似文献   

7.
Durability and reliability are still major challenges of vehicular polymer electrolyte membrane fuel cell (PEMFC) systems. With exhaust gas recirculation on both the anode and cathode sides, two important functions can be achieved: the voltage clamping in low current density, and the self-humidification without any external humidifiers. The former restrains catalyst decay in small load working conditions, and the latter is beneficial for improving the cold-start ability. In this study, dynamic performances and stable characteristics of a fuel cell system with dual exhaust gas recirculation are firstly experimentally studied using an orthogonal test method. System parameters, including humidification temperature of cathode external humidifier, fresh air stoichiometric ratio (SR), current density, cathode and anode recirculation pump speeds, are regarded as key factors in the experiments based on the testing conditions of the test-bench. Two four-factor and three-level orthogonal tables are designed, and the effects of key factors on system performance indices (average cell voltage, relative humidity (RH) at cathode inlet, high frequency resistance (HFR), oxygen concentrations at cathode inlet and outlet, and the concentration difference between these two positions) are investigated. Results show that: (1) with the cathode recirculation, the cell voltage can be reduced in low current densities by coordinately adjusting the recycled gas flow and reducing fresh air SR; (2) with the dual recirculation, the fuel cell membrane can be well hydrated, and system performance only shows 3% reduction compared with a system with an external humidifier; (3) the difference between the oxygen molar concentration at the inlet and outlet of cathode gas channels becomes small using dual recirculation.  相似文献   

8.
In a proton exchange membrane fuel cell (PEMFC) water management is one of the critical issues to be addressed. Although the membrane requires humidification for high proton conductivity, water in excess decreases the cell performance by flooding. In this paper an improved strategy for water management in a fuel cell operating with low water content is proposed using a parallel serpentine-baffle flow field plate (PSBFFP) design compared to the parallel serpentine flow field plate (PSFFP). The water management in a fuel cell is closely connected to the temperature control in the fuel cell and gases humidifier. The PSBFFP and the PSFFP were evaluated comparatively under three different humidity conditions and their influence on the PEMFC prototype performance was monitored by determining the current density–voltage and current density–power curves. Under low humidification conditions the PEMFC prototype presented better performance when fitted with the PSBFFP since it retains water in the flow field channels.  相似文献   

9.
The performance of a proton exchange membrane (PEM) fuel cell is greatly affected by the operating parameters. Appropriate operating parameters are necessary for PEM fuel cells to maintain stable performance. A three-dimensional multi-phase fuel cell model (FCM) is developed to predict the effects of operating parameters (e.g. operating pressure, fuel cell temperature, relative humidity of reactant gases, and air stoichiometric ratio) on the performance of PEM fuel cells. The model presented in this paper is a typical nine-layer FCM that consists of current collectors, flow channels, gas diffusion layers, catalysts layers at the anode and the cathode as well as the membrane. A commercial Computational Fluid Dynamics (CFD) software package Fluent is used to solve this predictive model through SIMPLE algorithm and the modeling results are illustrated via polarization curves including I–V and I–P curves. The results indicate that the cell performance can be enhanced by increasing operating pressure and operating temperature. The anode humidification has more significant influences on the cell performance than the cathode humidification, and the best performance occurs at moderate air relative humidity while the hydrogen is fully humidified. In addition, the cell performance proves to be improved with the increase of air stoichiometric ratio. Based on these conclusions, several suggestions for engineering practice are also provided.  相似文献   

10.
The humidification of PEM fuel cells is critical for their performance and efficiency and for ensuring a long durability. In most PEM fuel cell systems for mobile applications membrane humidifiers are used to humidify the fresh air. In this process, the water contained in the cathode exhaust gas is used to increase the humidity of the supply air. Despite the simple design of membrane humidifiers, the simulation of the water transfer is difficult and so far there exist hardly any precise models to calculate the absorption and desorption processes. Common approaches that use the Sherwood number to determine the sorption rates cannot account for the influence of the local water content of the membrane. This ultimately leads to an inaccurate simulation of humidifier behavior, as these models cannot consider the fact that desorption is nearly ten times faster than absorption.In this study, an empirical formula for an accurate determination of the sorption rate is derived based on experimental data. This function accounts for the different absorption and desorption rates by finding a sorption rate coefficient as a function of the local membrane water content, temperature, pressure and flow velocity.Furthermore, a CFD model is derived from the geometry of a commercially available membrane humidifier, which is also investigated on a test bench. Using the experimental data, the CFD model is validated and it is shown that the developed sorption rate formula leads to good agreements between simulations and experiments at steady-state operating points of the humidifier.  相似文献   

11.
A gas-to-gas humidifier using membranes is the preferred technology for external humidification of fuel cell reactant gases in mobile applications because no extra power supply is required and there are no moving parts. In particular, a shell and tube structure is compact, which allows its easier integration in a fuel cell vehicle.

This paper proposes a mathematical model for the humidifier using the principles of thermodynamics, including analysis of heat and mass transfer and of static and dynamic behaviors. Firstly, the heat and mass transfer behavior was simulated and the results compared with the experimental data. Secondly, the model was used to investigate the sensitivity of the geometric parameters and the effects of various operating conditions on performance. Finally, step responses of the humidifier at various flow rates were analyzed.  相似文献   


12.
Air humidification is a crucial issue for superior performance of proton exchange membrane fuel cell (PEM fuel cell) stacks. In this work, an air humidifier is proposed for a 5 kW PEM fuel cell stack working at elevated temperatures, e.g., 90–95 °C. The high temperature coolant exiting the stack is utilized to pre-heat the air in the heat exchanging tubes of the humidifier, and the heated air is humidified with deionized water supplied by a nozzle fixed in a top cavity. Both the tubes and the nozzle are properly designed to ensure sufficient heat transfer and superior atomization. Humidification performance is evaluated under different operation conditions. The nozzle is able to inject well-atomized water with uniform droplet diameter. With the variation of inlet air flow rate, the relative humidity (RH) of the outlet air increases at the beginning, then decreases gradually due to the attenuation of dew point (DP) temperature. However, the humidification performance can be improved when higher temperature deionized water is injected or high temperature coolant is supplied. At a coolant temperature of 95 °C, the outlet air DP temperature is maintained over 80 °C with 25 °C injection water. Moreover, better humidification performance is achieved when the injection water flow rate is controlled according to the working conditions of the stack.  相似文献   

13.
A concept of using the product water to internally humidify the air stream in a PEM fuel cell without external humidification is investigated by a simple, pseudo 2-D model along a single channel. This model takes into account the mass and energy balance, water and heat generation rates, heat removal, and water transport through the membrane. The model and thus the concept were confirmed experimentally using a 5-segment fuel cell. The temperature of each segment could be individually controlled, and the temperature and humidity of air could be measured between each segment. A temperature profile has been established, by applying spatially variable heat removal rates along the cathode channel, that results in relative humidity being close to 100% throughout the cell without any external humidification. The concept may be applied to a fuel cell stack resulting in simplification of the suporting system by avoiding external humidification.  相似文献   

14.
A gas humidification sub-system that does not add to the parasitic power loss is advantageous for water management in PEMFC. A membrane humidifier was fabricated with porous membrane and the performance of the single cell using this humidifier has been evaluated. The study shows that the performance of the humidifier is comparable to that of the bubble humidifier. It was further found that the humidifier is suitable for both water and exhaust cathode air as the humidifying medium.  相似文献   

15.
In this study, a gas diffusion layer (GDL) was modified to improve the water management ability of a proton exchange membrane fuel cell (PEMFC). We developed a novel hydrophobic/hydrophilic double micro porous layer (MPL) that was coated on a gas diffusion backing layer (GDBL). The water management properties, vapor and water permeability, of the GDL were measured and the performance of single cells was evaluated under two different humidification conditions, R.H. 100% and 50%. The modified GDL, which contained a hydrophilic MPL in the middle of the GDL and a hydrophobic MPL on the surface, performed better than the conventional GDL, which contained only a single hydrophobic MPL, regardless of humidity, where the performance of the single cell was significantly improved under the low humidification condition. The hydrophilic MPL, which was in the middle of the modified GDL, was shown to act as an internal humidifier due to its water absorption ability as assessed by measuring the vapor and water permeability of this layer.  相似文献   

16.
The performance of polymer electrolyte membrane fuel cells is highly influenced by the water content in the membrane. To prevent the membrane from drying, several researchers have proposed extra humidification on the input reactants. But in some applications, the extra size and weight of the humidifier should be avoided. In this research a control technique, which maintains the relative humidity on saturated conditions, is implemented by adjusting the air stoichiometry; the effects of drying of membrane and flooding of electrodes are considered, as well. For initial analysis, a mathematical model reveals the relationship among variables that can be difficult to monitor in a real machine. Also prediction can be tested optimizing time and resources. For instance, the effects of temperature and humidity can be analyzed separately. For experimental validation, tests in a fault tolerant fuel cell are conducted.  相似文献   

17.
A scaled gas humidification system using injectors for PEM fuel cell vehicles was developed and the humidification performance was evaluated under various operating conditions. The humidification system consists of an injector, a duplex enthalpy mixer and a water management apparatus. A dew point meter of the chilled mirror type was used to measure the humidity of the air and the hydrogen. Humidification performance was evaluated by measuring the dew point temperature of the humidified gases. Humidification performance was observed to be critically affected by the temperature of injected water and the gas flow rate in this study. The dew point of the humidified gas rose when the temperature of injected water increased, however, it dropped when the gas flow rate was increased. Experimental results show that the outlet temperature was 58.4 °C, dew point temperature of the humidified air reached 54.0 °C when the injection water temperature was 69.5 °C with the room temperature air flow rate of 200 L min−1. Inlet gas temperature also affected the humidification performance and response time. In addition, a 50 cm2 PEM fuel cell was tested to verify the effectiveness of the devised humidifier. When operated at 65 °C, the fuel cell showed an operating voltage of 0.5 V at a current density of 600 mA cm−2.  相似文献   

18.
The effect of relative humidity of the cathode (RHC) on proton exchange membrane (PEM) fuel cells has been studied focusing on automotive operation. Computational fluid dynamics (CFD) simulations were performed on a 300-cm2 serpentine flow-field configuration at various RHC levels. The dependency of current density, membrane water contents, net water flux on the performance and the uniformity was investigated. The uniformity of current density and temperature was evaluated by employing standard deviation. The water balance inside a fuel cell was examined by describing electro-osmotic drag and back diffusion. It was concluded that the RHC has strong effect on the cell performance and uniformity. The dry RHC showed low cell voltage and non-uniform distributions of current density and temperature, whereas high RHC presented increased cell performance and uniform distributions of current density and temperature with well-hydrated membrane electrode assembly (MEA). Also the local current density distribution was strongly dependent on the local membrane water contents distribution that has complex phenomena of water transport. The elimination of external humidifier is desirable for the automotive operation, but it could degrade cell performance and durability due to dehydration of the MEA. Therefore a proper humidification of the reactant is necessary.  相似文献   

19.
This paper introduced a one-dimensional analytical model to quantitatively examine the humidifying capacity of a Nafion™ membrane humidifier. Water permeability for the Nafion™ membrane was calculated, depending on the thickness of the Nafion™ membrane. Relative humidity for a carrier gas passed through the Nafion™ membrane humidifier was simulated at various gas flow rates, which showed good agreement with experimental data. Simulations were also conducted to predict humidity levels as a function of length and height of the gas flow channel. This analytical model can be used in future work to properly design Nafion™ membrane humidifiers for use in PEM fuel cell systems.  相似文献   

20.
Water management is key in the optimization of proton exchange membrane fuel cell performance and durability. Humidifiers can be used to provide water vapor to cathode air, ensuring the proper operation of proton exchange membrane fuel cells. In this study, water vapor transport characteristics of hollow fiber membrane modules were investigated in shell-tube humidifiers under isothermal conditions, using two different test jig constructions: a convection jig and a diffusion jig. The mass transfer rate of water vapor was evaluated via the impact of various operating parameters, including temperature, flow rate, pressure, and relative humidity of inlet wet air, flow arrangements, and surface area of the tube side. The result was presented by the water vapor transport rate from wet air flow to dry air flow across the hollow fiber membrane. It was found that humidification performance could be improved with higher operating temperature, flow rate, and relative humidity of inlet wet air, lower pressure, larger membrane surface area, higher convection effect, and substituting co-current with counter-current flow configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号